Skip to main content

James Webb Space Telescope unfolds its tennis-court-sized sunshield

To help ensure success, technicians carefully inspect the James Webb Space Telescope’s sunshield before deployment testing begins, while it is occurring, and perform a full post-test analysis to ensure the observatory is operating as planned.
To help ensure success, technicians carefully inspect the James Webb Space Telescope’s sunshield before deployment testing begins, while it is occurring, and perform a full post-test analysis to ensure the observatory is operating as planned. NASA/Chris Gunn

Progress on the testing of NASA’s next-generation telescope, the James Webb Space Telescope, is back underway after delays this year due to the coronavirus pandemic. Recently, the James Webb unfolded its massive sunshield in a series of tensioning tests which prepare the telescope for launch next year.

The latest test involved the telescope deploying its tennis-court-sized sunshield which will protect the delicate electronics of the telescope from the heat of the sun. “This is one of Webb’s biggest accomplishments in 2020,” said Alphonso Stewart, Webb deployment systems lead, in a statement. “We were able to precisely synchronize the unfolding motion in a very slow and controlled fashion and maintain its critical kite-like shape, signifying it is ready to perform these actions in space.”

Recommended Videos

The testing involved running the hardware through its paces, including the 139 actuators, eight motors, and thousands of other components that control the complex unfurling process. The testing is further complicated by the fact that in space, the unfurling will happen without gravity, but here on Earth, the gravity can cause friction issues.

The telescope, which will be a successor to the Hubble Space Telescope and which will search for habitable worlds among other scientific objectives, has been hit with a series of delays, including work on the project being suspended due to the coronavirus. But work is back underway now, with the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland performing tests on the hardware to ensure everything is ready for launch.

The team is hopeful that the launch of the telescope can go ahead in 2021. “This milestone signals that Webb is well on its way to being ready for launch. Our engineers and technicians achieved incredible testing progress this month, reducing significant risk to the project by completing these milestones for launch next year,” Bill Ochs, project manager for Webb, said in the statement. “The team is now preparing for final post-environmental deployment testing on the observatory these next couple of months prior to shipping to the launch site next summer.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more