Skip to main content

Otherworldly Mars image shows ripples sculpted by dust devils

The European Space Agency (ESA) has released a hauntingly beautiful image of the surface of Mars, showing how the landscape there is sculpted by winds.

The image, taken from orbit by the ESA and Roscosmos ExoMars Trace Gas Orbiter (TGO), shows the Hooke Crater area in the southern highlands of Mars. The false colors are due to the filters used by TGO’s CaSSIS camera, which looks in the infrared wavelength to capture more details of the surface mineralogy.

A fascinating and otherworldly landscape near Hooke Crater in Mars’ southern highlands.
Chaotic mounds, wind-sculpted ripples, and dust devil tracks: This image shows a fascinating and otherworldly landscape near Hooke Crater in Mars’ southern highlands. The image was taken by the CaSSIS camera onboard the ESA/Roscosmos ExoMars Trace Gas Orbiter (TGO) on February 1, 2021, and shows part of Argyre Planitia, centered at 46.2°S/318.3°E. ESA/Roscosmos/CaSSIS

This unusual-looking scenery is par for the course on Mars, where the thin atmosphere, high winds, and large amounts of dust combine to create striking features on the surface.

Recommended Videos

“This type of scenery is similar to ‘chaotic terrain’: A kind of broken, disrupted terrain seen across Mars where haphazard groups of variously sized and shaped rocks — irregular knobs, conical mounds, ridges, flat-topped hills known as mesas — clump together, often enclosed within depressions,” the European Space Agency explains. “There are around 30 regions of chaotic terrain defined on Mars (see ESA Mars Express views of Ariadnes Colles, Pyrrhae Regio, and Iani Chaos for just a small sample); while this small patch has not been defined as one of these, its appearance is certainly chaotic.”

Close-up image of the false-colored contrast (blue) indicating whorls from dust devils and canyons.
ESA/Roscosmos/CaSSIS

When seen up close, you can see the blue-tinted tendrils stretching out across the image. These are the tracks of dust devils, whirlwinds which are like tiny tornadoes and are common on Mars. When hot air at the surface of the planet rises quickly through cooler air above it, it forms an updraft that can begin to rotate and create a dust devil. This spinning column of air travels across the planet’s surface, leaving the distinctive tracks, before petering out.

Please enable Javascript to view this content

ESA notes that the tracks seen in this image appear to travel on a north-south orientation, which could be the result of local winds blowing in that direction. Learning more about the <artian weather, including its winds, is the major focus of one of the instruments aboard NASA’s Perseverance rover. The MEDA instrument collects data on wind speed and direction, temperature, humidity, and the amount of dust in the atmosphere in order to better understand the martian weather system.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more
Perseverance rover finds tantalizing hints of possible ancient life on Mars
mars 2020 perseverance rover

NASA's Perseverance rover was sent to Mars with one big, ambitious aim: to see if life could ever have thrived on our neighboring planet. Although there's unlikely to be anything alive on Mars now, the planet was once similar to Earth, with a thicker atmosphere and plentiful water on its surface. And during this time, billions of years ago, microbial life could have survived there. Now, Perseverance has located some tantalizing indications of possible microbial life -- although it's too early for scientists to be sure.

The rover has been taking samples by drilling into the martian rock as it travels, and it's a recent sample from an area called the Cheyava Falls that has ignited interest. The rock, collected on July 21, has indications of chemical signatures and physical structures that could potentially have been formed by life, such as the presence of organic compounds. These carbon-based molecules are the building blocks of life; however, they can also be formed by other processes.

Read more
How NASA is using AI on the Perseverance rover to study Mars rocks
akdjf alkjdhf lk

Space engineers have been using AI in rovers for some time now -- hence why today's Mars explorers are able to pick a safe landing site and to drive around a region autonomously. But something they haven't been able to do before now is to do science themselves, as most of that work is done by scientists on Earth who analyze data and point the rover toward targets they want to investigate.

Now, though, NASA's Perseverance rover is taking the first steps toward autonomous science investigation on Mars. The rover has been testing out an AI capability for the last three years, which allows it to search for and identify particular minerals in Mars rocks. The system works using the rover's PIXL instrument (Planetary Instrument for X-ray Lithochemistry), a spectrometer that uses light to analyze what rocks are made of. The software, called adaptive sampling, looks though PIXL's data and identifies minerals to be studied in more detail.

Read more