Skip to main content

Dust threatens the future of Mars helicopter Ingenuity

The Mars helicopter Ingenuity faced a challenge this week when it lost communications with its rover partner Perseverance, marking the first time in its more than one year of operations that it had missed a communications check-in. Fortunately for the plucky little helicopter, communications have now been re-established. However, it faces an uphill battle with the encroaching Martian dust.

The drop in communications, which occurred on Tuesday, May 3, was due to troublesome dust in the Martian atmosphere, according to an update shared by NASA. With changing seasons on Mars, the amount of dust in the atmosphere is increasing. And this dust can cover up solar panels, like the ones on Ingenuity, rendering them less effective.

NASA's Mars Perseverance rover acquired this image using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast.
NASA’s Mars Perseverance rover acquired this image using its Left Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. NASA/JPL-Caltech/ASU

Due to the dusty solar panels, it is harder for Ingenuity to charge its batteries — a problem the helicopter has faced before when a dust storm passed over the Jezero crater where it is exploring, and it had to shake the dust off before it could continue operations. On this occasion, the dust prevented the batteries from charging to such a degree that part of the helicopter’s control system, the field-programmable gate array (FPGA), switched off.

Recommended Videos

“When the battery pack’s state of charge dropped below a lower limit, the helicopter’s field-programmable gate array (FPGA) was powered down,” explained NASA’s David Agle in the update. “The FPGA manages Ingenuity’s operational state, switching the other avionics elements on and off as needed to maximize power conservation. It also operates the heaters that enable the helicopter to survive frigid Martian nights, maintains precise spacecraft time, and controls when the helicopter is scheduled to wake up for communications sessions with Perseverance.”

The helicopter is designed to turn components on and off during the day and night cycle as they are required. But when the FPGA switched off unexpectedly, it reset Ingenuity’s onboard clock. Then, when the sun rose and sunlight started recharging its batteries again, the helicopter’s time was out of sync with the rover. That meant Ingenuity’s attempts to contact Perseverance were at the wrong time, hence why it missed the check-in.

Perseverance kept listening for Ingenuity’s check-in signal, and it arrived on May 5 at 11:45 a.m. local Mars time. Ingenuity was able to establish a radio link and convey that it was stable, at the right temperature, and its battery was recharging and was up to 41% of capacity.

That’s all good news, but there is an ongoing issue caused by the dust. It will continue to be hard for the helicopter to charge its batteries enough to get through the cold Martian nights. This issue isn’t a surprise, as Ingenuity was originally only designed for five flights but has made an amazing 24 flights so far. With that increased mission length, the team knew that seasonal changes to the weather would create greater challenges.

“We have always known that Martian winter and dust storm season would present new challenges for Ingenuity, specifically colder sols, an increase in atmospheric dust, and more frequent dust storms,” said Ingenuity Team Lead Teddy Tzanetos of NASA’s Jet Propulsion Laboratory. “Every flight and every mile of distance flown beyond our original 30-sol mission has pushed the spacecraft to its limits each and every sol on Mars.”

To try and keep Ingenuity going for as long as possible, the team has sent new commands to the helicopter to lower the temperature at which it turns its heaters on. This saves on battery usage as the heaters consume a lot of power, but it does leave the helicopter’s hardware exposed to cold temperatures, which is risky. However, if the hardware can survive several nights like this, the battery might be recharged enough that the helicopter can fly once again.

“Our top priority is to maintain communications with Ingenuity in the next few sols, but even then, we know that there will be significant challenges ahead,” said Tzanetos. “I could not be prouder of our team’s performance over the last year, let alone our aircraft’s incredible achievements on Mars. We are hopeful that we can accumulate battery charge in order to return to nominal operations and continue our mission into the weeks ahead.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Perseverance rover gears up for a big climb to the rim of the Jezero Crater
One of the navigation cameras aboard NASA’s Perseverance Mars rover captured this view looking back at the “Bright Angel” area on July 30, the 1,224th Martian day, or sol, of the mission.

The Perseverance rover on Mars is set to begin its newest challenge: a slog up the rim of the Jezero Crater that will take months to complete. The rover will face steep slopes and difficult terrain, testing its wheels and suspension system, but its efforts should help to uncover rocks from the most ancient part of the Mars crust.

Since the rover landed in the Jezero Crater in 2021, it has been exploring the floor of the crater and the site of an ancient river delta. This area was chosen because it was once home to an ancient lake, so the rock cores that the rover has collected will help to uncover information about the history of water on Mars -- which is vital to determine if the planet could ever have been habitable.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more
Relive Mars rover’s ‘7 minutes of terror’ during landing 12 years ago
An animation showing the Curiosity spacecraft heading toward Mars.

At 1:31 a.m. ET on August 6, 2012, NASA’s Curiosity rover made a spectacular landing on the surface of Mars.

To mark the 12th anniversary, NASA has shared a video (below) in which members of the Curiosity team talk about how they achieved the remarkable feat, paying particular attention to the so-called “seven minutes of terror” during the final moments of descent.

Read more