Skip to main content

Scientists discover method for making rocket fuel on Mars

This concept depicts astronauts and human habitats on Mars.
This concept depicts astronauts and human habitats on Mars. NASA’s Mars 2020 rover will carry a number of technologies that could make Mars safer and easier to explore for humans. NASA

One of the biggest limitations to space missions is weight. The more mass that is added to a rocket, the harder it is to get that payload to where it needs to go. So future crewed missions to Mars have a challenge in terms of how to transport essential but heavy resources like the fuel needed for the return journey to Earth. One approach to this problem is to say we shouldn’t carry fuel to Mars — instead, we should produce fuel from the resources that are available there.

Now, scientists at the University of California, Irvine have come up with a way to make methane-based rocket fuel from resources available on the Martian surface.

Recommended Videos

The method revolves around the use of a zinc catalyst used in a reaction called the Sabatier process. The zinc acts as a catalyst for carbon dioxide, which reacts with hydrogen to produce methane and water. While this process is well known and is used in current space missions like the life support system on the International Space Station, it has previously required large facilities to operate. The breakthrough use of the catalyst allows the process to be performed on a much smaller scale.

Please enable Javascript to view this content

“The process we developed bypasses the water-to-hydrogen process, and instead efficiently converts CO2 [carbon dioxide] into methane with high selectivity,” lead author Houlin Xin, an assistant professor in physics & astronomy, said in a statement.

Carbon dioxide is plentifully available on Mars, as it makes up the majority of the martian atmosphere. And while this method would require astronauts to bring some of the catalyst with them, it would be a much smaller amount than the fuel it can make. It is also easy to transport: “The zinc is fundamentally a great catalyst,” Xin said. “It has time, selectivity, and portability — a big plus for space travel.”

Most rockets currently use hydrogen-based fuel, but there is research being performed into using methane-based fuel in the future. The SpaceX Raptor engine, which will be used in the company’s upcoming heavy launch vehicle Starship, uses methane-based fuel.

But there is still much research to be done into the creation and use of methane fuel before this technique can be used on Mars. “Lots of engineering and research is needed before this can be fully implemented,” Xin said. “But the results are very promising.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Europe’s Vega rocket makes its final flight
The third Copernicus Sentinel-2 satellite, Sentinel-2C, has launched aboard the final Vega rocket, flight VV24, from Europe’s Spaceport in French Guiana. The rocket lifted off on 5 September at 03:50 CEST (4 September 22:50 local time).

Europe has launched its Vega rocket for the last time, on a mission to carry the European Space Agency (ESA)'s Earth-observation Copernicus Sentinel-2C satellite into orbit. The Vega rocket has been used for the last 12 years but will now be retired to make way for the upcoming Vega-C model.

The launch took place from Europe’s Spaceport in French Guiana, lifting off at 3:50 a.m. CEST on September 5. The launch went smoothly, with the Sentinel-2 satellite inserted into orbit around 15 minutes after launch. The new satellite will replace the older Sentinel-2A after a brief period of the two operating together in tandem, and will form a part of the Sentinel network along with Sentinel-2B, which flies at the same orbit but 180 degrees apart.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more
Perseverance rover finds tantalizing hints of possible ancient life on Mars
mars 2020 perseverance rover

NASA's Perseverance rover was sent to Mars with one big, ambitious aim: to see if life could ever have thrived on our neighboring planet. Although there's unlikely to be anything alive on Mars now, the planet was once similar to Earth, with a thicker atmosphere and plentiful water on its surface. And during this time, billions of years ago, microbial life could have survived there. Now, Perseverance has located some tantalizing indications of possible microbial life -- although it's too early for scientists to be sure.

The rover has been taking samples by drilling into the martian rock as it travels, and it's a recent sample from an area called the Cheyava Falls that has ignited interest. The rock, collected on July 21, has indications of chemical signatures and physical structures that could potentially have been formed by life, such as the presence of organic compounds. These carbon-based molecules are the building blocks of life; however, they can also be formed by other processes.

Read more