Skip to main content

All of the modes James Webb instruments will use to study the universe

With the James Webb Space Telescope now fully aligned and capturing crisp images, the team has moved on to getting its instruments calibrated. While this process is ongoing, NASA has shared an update about the 17 different modes that will be possible using Webb’s four instruments, with examples of what kind of scientific research will be possible with each.

As the engineers work on calibrating Webb’s instruments, they will check through each of the 17 modes and make sure it is ready for science operations to begin this summer.

Near-Infrared Camera (NIRCam) modes:

  1. Imaging. This instrument takes pictures in the near-infrared wavelength, and will be Webb’s main camera function. It will be used to take images of both individual galaxies and deep fields, such as the Hubble Ultra-Deep Field.
  2. Wide field slitless spectroscopy. This mode, in which light is split into different wavelengths, was originally intended just for aligning the telescope, but scientists realized they could also use it for science-related tasks such as observing distant quasars.
  3. Coronagraphy. Some sources of light, like stars, are very bright and glare from them covers up fainter light sources nearby. This mode places a disk to block out a bright light source so dimmer objects can be seen, such as exoplanets orbiting around bright stars.
  4. Time series observations – imaging. This mode is used to observe objects that change quickly, like magnetars.
  5. Time series observations – grism. This mode can look at light coming through the atmosphere of exoplanets to learn about what the atmosphere is made up of.

Near-Infrared Spectrograph (NIRSpec) modes:

  1. Multi-object spectroscopy. This instrument is outfitted with a special microshutter array, in which thousands of tiny windows, each around the width of a human hair, can be opened or closed individually. This allows the instrument to observe up to 100 objects at the same time, meaning it can collect data far faster than previous instruments. It will be used to capture deep field images like one of a region called the Extended Groth Strip.
  2. Fixed slit spectroscopy. Instead of looking at many targets at once, this mode uses fixed slits for very sensitive readings for individual targets, such as looking at light from sources of gravitational waves called kilonovas.
  3. Integral field unit spectroscopy. This mode looks at light coming from a small area instead of a single point, which allows researchers to get an overall look at objects such as distant galaxies that appear larger due to an effect called gravitational lensing.
  4. Bright object time series. This mode allows researchers to look at objects that change quickly over time, such as an exoplanet in a full orbit of its star.
Recommended Videos

Near-Infrared Imager and Slitless Spectrograph (NIRISS) modes:

  1. Single object slitless spectroscopy. This mode blurs out light from very bright objects so researchers can look at smaller objects, like rocky Earth-like plants in the TRAPPIST system.
  2. Wide field slitless spectroscopy. This type of spectroscopy is used to look at the most distant galaxies, like those we don’t yet know about.
  3. Aperture masking interferometry. This mode blocks out light from some of the 18 segments of Webb’s primary mirror to allow high-contrast imaging, like looking at a binary star system where stellar winds from each star are colliding.
  4. Imaging. This mode is a backup for the NIRCam imaging that can be used when the other instruments are already in use. It will be used to image targets like a gravitationally lensing galaxy cluster.

Mid-Infrared Instrument (MIRI) modes:

  1. Imaging. MIRI works in the mid-infrared wavelength, which is useful for looking at features like dust and cold gas, and will be used on such targets as the nearby galaxy Messier 33.
  2. Low-resolution spectroscopy. This mode is for looking at faint sources, like an object’s surface to see its composition, and will be used to study objects like a tiny moon orbiting Pluto called Charon.
  3. Medium-resolution spectroscopy. This mode is better for brighter sources, and will be used to look at targets like the disks of matter from which planets form.
  4. Coronagraphic imaging. Like NIRCam, MIRI also has cornographic modes that can block out bright sources and which will be used to hunt for exoplanets around the nearby star Alpha Centauri A.
Please enable Javascript to view this content

To see the progress being made on getting all 17 of these modes ready, you can follow along using the Where is Webb tracker, which shows deployment status as each mode is ready for operations.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more