Skip to main content

Scientists find way to photograph thunder for the first time

ever wanted to see what thunder looks like scientists have found a way image3
Credit: University of Florida, Florida Institute of Technology, and Southwest Research Institute
Everyone knows from science class that thunder accompanies lightning during a storm. While light travels at 186,000 miles a second, sound only travels around 1,088 feet per second at room temperature. Thunder allows people to calculate how far away lightning is – the flash-to-bang method. While one can easily see lightning, it’s a lot harder to see thunder mainly because, well, thunder is composed of sound waves. Yet, scientists have managed to photograph it in detail, as the journal Nature reports.

You’re probably scratching your head, wondering how one could possibly photograph sound. Last year, at a U.S. military base in Gainesville, Florida, scientists triggered lightning by shooting a rocket into thunderstorm clouds. Florida is known for having the most lightning strikes in the United States, making it a perfect place to conduct the experiment. The scientists were then able to capture the acoustic energy emanating from the lightning strike, allowing the researchers to “see” thunder and further understand the mechanics of how thunder and lightning work.

Rocket-triggered lightning event, July 14, 2014

Maher Dayeh, an atmospheric scientist at the Southwest Research Institute’s (SwRI) Space Science and Engineering Division in San Antonio, Texas, conducted the experiment at the University of Florida’s International Center for Lightning Research and Testing, situated at Camp Blanding; SwRI collaborated with the University of New Hampshire, University of Florida, and Florida Institute of Technology on the experiment. It marks the first time scientists have been able to capture thunder as a long-exposure image with detail, which Dayeh and his team presented at a joint meeting of American and Canadian geophysical societies on May 5.

From SwRI: This long-exposure photograph (left) shows a triggered lightning event. The initial copper wire burn glows green, while nine subsequent return strokes are more purplish. Scientists plotted acoustic data (right) measured at the array that clearly show the unique signatures of the nine return strokes (RS) associated with the triggered lightning event. The “curved” appearance of the RS signatures is associated with sound speed propagation effects. A secondary acoustic signature after the first RS (b) is the result of an electric current pulse associated with the return stroke.
From SwRI: This long-exposure photograph (left) shows a triggered lightning event. The initial copper wire burn glows green, while nine subsequent return strokes are more purplish. Scientists plotted acoustic data (right) measured at the array that clearly show the unique signatures of the nine return strokes (RS) associated with the triggered lightning event. The “curved” appearance of the RS signatures is associated with sound speed propagation effects. A secondary acoustic signature after the first RS (b) is the result of an electric current pulse associated with the return stroke. Credit: University of Florida, Florida Institute of Technology, and Southwest Research Institute

“Lightning strikes the Earth more than four million times a day, yet the physics behind thid violent process remain poorly understood,” Dr. Dayeh says in a SwRI release. While we understand the general mechanics of thunder generation, it’s not particularly clear which physical processes of the lightning discharge contribute to the thunder we hear.”

From SwRI: SwRI scientists compared long-exposure optical photographs of two different triggered lightning events (on top) with acoustically imaged profiles of the discharge channel (below), corrected for sound speed propagation and atmospheric absorption effects. The apparent tilt of the lightning bolt in the left photo is also seen in the acoustic image.
From SwRI: SwRI scientists compared long-exposure optical photographs of two different triggered lightning events (on top) with acoustically imaged profiles of the discharge channel (below), corrected for sound speed propagation and atmospheric absorption effects. The apparent tilt of the lightning bolt in the left photo is also seen in the acoustic image. Credit: University of Florida, Florida Institute of Technology, and Southwest Research Institute

With the thunder image, scientists can learn more about how it originates. Besides the rocket, Dayeh and his team create an array of microphones in a technique called ranging, for determining the source of the sound. At first, Dayeh thought the experiment failed after seeing a “colorful piece of modern art.” But after looking at the image at a higher frequency, he was was able to see the “distinct signature of thunder.”

Recommended Videos

As for the next test, the scientists would like to re-create or study a more natural-occurring lightning bolt, as an artificially triggered one comes down in a straight line, as oppose to zigzagging. Dayeh told Nature that this would help them understand how energy flows along various branches of lightning, but he isn’t sure when this will happen.

Jose Alvarez
Former Digital Trends Contributor
Introduced to tech at a young age, Jose has grown attached to video games in particular. He has covered topics such as…
My favorite SD card reader is a mere $15 for Prime Big Deal Days
The Lexar USB-C SD card reader.

I take a lot of pictures on a daily basis. And while I usually get to offload them in the comfort of my home, sometimes I need to export as quickly as possible. Maybe even straight from my phone.

That's where my new favorite SD card reader comes in.

Read more
Astronaut enjoys out-of-this-world view from his bedroom window
An aurora as seen from a Crew Dragon spacecraft docked at the ISS.

A NASA astronaut aboard the International Space Station (ISS) has posted a beautiful image showing an aurora over Earth.

Matthew Dominick has been aboard the ISS since March and is due to return home on a SpaceX Crew Dragon spacecraft on Sunday. In fact, it was from the docked Crew Dragon that he captured the stunning shot.

Read more
Best GoPro Prime Big Deal Days deals: Every model is on sale!
Best Prime Day Deals

Update 10/9/24: Day one of Amazon's Prime Big Deal Days festivities has closed out, but we've still got one more day of sales to go. Prime Day GoPro deals are still ripe for the picking, so check back here regularly if you haven't already made an action camera purchase this Prime Day.

In case you didn't know, it is now time for Prime Big Deal Day deals to heat up. Prime Day deals officialy lasts through October 9, and among them are plenty of Prime Big Deal Day camera deals that include good prices on action cameras. And, yet again, within these deals you'll find deals on what is probably the biggest name in action cameras, GoPro. The best GoPro Prime Day deals remaining offer some impressive savings on a number of camera models, as well as some accessories. Below you'll find all of the best GoPro Prime Big Deal Day deals available, so read onward for the details.
GoPro Hero 9 Black — $200 $350 43% off

Read more