Skip to main content

Something strange is up with this black hole

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn’t exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

 Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space. DESY, Science Communication Lab

The black hole is throwing out material at a tremendous speed of half the speed of light. This happened years after the star was spaghettified by the black hole, in what is called a tidal disruption event (TDE), and there is no obvious explanation for this delay.

Recommended Videos

“We have been studying TDEs with radio telescopes for more than a decade, and we sometimes find they shine in radio waves as they spew out material while the star is first being consumed by the black hole,” said co-author Edo Berger. “But in AT2018hyz there was radio silence for the first three years, and now it’s dramatically lit up to become one of the most radio luminous TDEs ever observed.”

The particularly strange thing is that the researchers had observed this spaghettification event and found it was “unremarkable.” Yet for some reason, this outflow is both very delayed and much faster than typical outflows.

“This is the first time that we have witnessed such a long delay between the feeding and the outflow,” Berger says. “The next step is to explore whether this actually happens more regularly and we have simply not been looking at TDEs late enough in their evolution.”

The research is published in The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
First Black astronaut candidate finally reaches space at age 90
NS-25 astronauts during training at Launch Site One. (May 18, 2024)

The NS-25 astronauts during training at Launch Site One. Blue Origin

Ed Dwight, was selected for NASA training in 1961, but the first Black astronaut candidate for the U.S. never got the chance to travel to space -- until now. Today, May 19, Dwight reached the edge of space as part of the 25th flight for the Blue Origin company -- more than 60 years after he was first selected. At 90 years old, Dwight is the oldest person to travel to space.

Read more
NASA 360-degree video shows what it’s like to plunge into a black hole
A black hole according to NASA's 360-degree video.

360 Video: NASA Simulation Shows a Flight Around a Black Hole

If you were having a bad day, plunging into a black hole would be enough to really top it off. Apparently, you’d experience a process known as “spaghettification” in which the black hole’s enormous gravitational force would compress your entire body while stretching it out at the same time, leaving you a bit noodle-like. Falling into a supermassive black hole would be a slightly less horrendous experience, apparently.

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more