Skip to main content

Curiosity rover battles up a 23-degree slope in its exploration of Mars

The Curiosity rover is slowly making its way up Mount Sharp, a 3-mile-tall mountain on Mars. Mountains are useful to study as their steep slopes can reveal layers of material laid down over time, like a geological time capsule. But just like heaving up a mountain is a challenge for humans, it can be tricky for rovers too. Curiosity recently took on a particularly steep and slippery slope, marking its most challenging climb to date.

How difficult terrain is for a rover to pass depends on a number of factors, including how steep it is, how slippery the sand is, and what obstacles such as boulders or sharp rocks are present. This ascent, which the rover tackled through May and June, had all of the above including a 23-degree incline. “If you’ve ever tried running up a sand dune on a beach – and that’s essentially what we were doing – you know it’s hard, but there were boulders in there as well,” said Amy Hale, a Curiosity rover driver at NASA’s Jet Propulsion Laboratory (JPL), in a statement.

This map shows the route NASA’s Curiosity Mars rover took from May into July to complete the most difficult climb of the mission. Starting in “Marker Band Valley” (the darker area at the top center), the route is shown in white, with dots indicating each stop the rover made.
This map shows the route NASA’s Curiosity Mars rover took from May into July to complete the most difficult climb of the mission. Starting in “Marker Band Valley” (the darker area at the top center), the route is shown in white, with dots indicating each stop the rover made. NASA/JPL-Caltech/USGS-Flagstaff/University of Arizona

The rover drivers like Hale plan out the safest possible route for the rover to travel to get it where it needs to go, then send these commands on to the rover. That’s necessary because of the communications delay between Earth and Mars, which can be up to 20 minutes depending on the planets’ relative positions to each other, which would make it impossible to drive the rover in real time. It also allows for more careful forward planning to ensure no harm comes to the rover.

Recommended Videos

However, sometimes the rover has issues following the commands sent by the drivers, such as if a wheel slips or rolls across a high rock. If the rover experiences any unexpected circumstances like these, it is programmed to stop to prevent any damage — and the drivers refer to these stops as faults.

In the recent ascent, these faults were a frequent issue. “We were basically playing fault bingo,” said Dane Schoelen, Curiosity’s strategic route planning lead at JPL. “Each day when we came in, we’d find out we faulted for one reason or another.”

The drivers decided to take a slight detour which added a few weeks of travel but turned out to be easier to traverse and allowed the rover to reach the end of the climb.

“It felt great to finally get over the ridge and see that amazing vista,” Schoelen said. “I get to look at images of Mars all day long, so I really get a sense of the landscape. I often feel like I’m standing right there next to Curiosity, looking back at how far it has climbed.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Relive Mars rover’s ‘7 minutes of terror’ during landing 12 years ago
An animation showing the Curiosity spacecraft heading toward Mars.

At 1:31 a.m. ET on August 6, 2012, NASA’s Curiosity rover made a spectacular landing on the surface of Mars.

To mark the 12th anniversary, NASA has shared a video (below) in which members of the Curiosity team talk about how they achieved the remarkable feat, paying particular attention to the so-called “seven minutes of terror” during the final moments of descent.

Read more
Perseverance rover finds tantalizing hints of possible ancient life on Mars
mars 2020 perseverance rover

NASA's Perseverance rover was sent to Mars with one big, ambitious aim: to see if life could ever have thrived on our neighboring planet. Although there's unlikely to be anything alive on Mars now, the planet was once similar to Earth, with a thicker atmosphere and plentiful water on its surface. And during this time, billions of years ago, microbial life could have survived there. Now, Perseverance has located some tantalizing indications of possible microbial life -- although it's too early for scientists to be sure.

The rover has been taking samples by drilling into the martian rock as it travels, and it's a recent sample from an area called the Cheyava Falls that has ignited interest. The rock, collected on July 21, has indications of chemical signatures and physical structures that could potentially have been formed by life, such as the presence of organic compounds. These carbon-based molecules are the building blocks of life; however, they can also be formed by other processes.

Read more
How NASA is using AI on the Perseverance rover to study Mars rocks
akdjf alkjdhf lk

Space engineers have been using AI in rovers for some time now -- hence why today's Mars explorers are able to pick a safe landing site and to drive around a region autonomously. But something they haven't been able to do before now is to do science themselves, as most of that work is done by scientists on Earth who analyze data and point the rover toward targets they want to investigate.

Now, though, NASA's Perseverance rover is taking the first steps toward autonomous science investigation on Mars. The rover has been testing out an AI capability for the last three years, which allows it to search for and identify particular minerals in Mars rocks. The system works using the rover's PIXL instrument (Planetary Instrument for X-ray Lithochemistry), a spectrometer that uses light to analyze what rocks are made of. The software, called adaptive sampling, looks though PIXL's data and identifies minerals to be studied in more detail.

Read more