Skip to main content

Famous black hole is even more massive than previously thought

An artist’s impression of the Cygnus X-1 system. This system contains the most massive stellar-mass black hole ever detected without the use of gravitational waves, weighing in at 21 times the mass of the Sun.
An artist’s impression of the Cygnus X-1 system. This system contains the most massive stellar-mass black hole ever detected without the use of gravitational waves, weighing in at 21 times the mass of the sun.  International Centre for Radio Astronomy Research

The Cygnus X-1 system is home to one of the world’s most famous black holes. It was the first-ever black hole detected and has become one of the most studied objects of its type. It was even once the subject of a bet between two renowned physicists: Stephen Hawking and Kip Thorne. Thorne bet Hawking that the object was a black hole in 1974, and Hawking cheerfully conceded in 1990 once the data came in.

Now, astronomers from the International Centre for Radio Astronomy Research (ICRAR) have discovered something surprising about this oft-observed object: It is both more massive and further away than previously thought.

Recommended Videos

To measure the distance to the object more accurately, the researchers used the Very Long Baseline Array — a group of 10 dishes across the U.S. — and a technique based on viewing the object from different angles as the Earth rotates.

“If we can view the same object from different locations, we can calculate its distance away from us by measuring how far the object appears to move relative to the background,” explained lead researcher Professor James Miller-Jones from Curtin University and the International Centre for Radio Astronomy Research (ICRAR) in a statement.

“If you hold your finger out in front of your eyes and view it with one eye at a time, you’ll notice your finger appears to jump from one spot to another. It’s exactly the same principle.”

The recently gathered data was also compared to previous readings taken a decade ago, which helped to reveal the black hole’s extra mass. “Over six days we observed a full orbit of the black hole and used observations taken of the same system with the same telescope array in 2011,” Professor Miller-Jones said. “This method and our new measurements show the system is further away than previously thought, with a black hole that’s significantly more massive.”

The new results show that the black hole has a mass of 21 times the mass of the sun, which is 50% more than was previously thought.

Another oddity about this particular black hole is that it has a supergiant companion star which is 22 times the size of the sun. This supergiant and the black hole orbit around each other close together and very fast — completing an orbit every five and a half days.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Swift Observatory spots a black hole snacking on a nearby star
Swift J0230 occurred over 500 million light-years away in a galaxy named 2MASX J02301709+2836050, captured here by the Pan-STARRS telescope in Hawaii.

Black holes can be hungry beasts, devouring anything that comes to close to them, including clouds of gas, rogue planets, and even stars. When stars get too close to a black hole, they can be pulled apart by gravity in a process called tidal disruption that breaks up the star into streams of gas. But a recent discovery shows a different phenomenon: a black hole that is "snacking" on a star. It's not totally destroying the star, but pulling off material and nibbling at it on a regular basis.

Black Hole Snack Attack

Read more
See the terrifying scale of a supermassive black hole in NASA visualization
Illustration of the black hole Sagittarius A* at the center of the Milky Way.

This week is black hole week, and NASA is celebrating by sharing some stunning visualizations of black holes, including a frankly disturbing visualization to help you picture just how large a supermassive black hole is. Supermassive black holes are found at the center of galaxies (including our own) and generally speaking, the bigger the galaxy, the bigger the black hole.

Illustration of the black hole Sagittarius A* at the center of the Milky Way. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/(Spaceengine) Acknowledgement: M. Zamani (NSF's NOIRLab)

Read more
Supermassive black hole spews out jet of matter in first-of-its-kind image
Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet is seen rising up from the centre of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets.

As well as pulling in anything which comes to close to them, black holes can occasionally expel matter at very high speeds. When clouds of dust and gas approach the event horizon of a black hole, some of it will fall inward, but some can be redirected outward in highly energetic bursts, resulting in dramatic jets of matter that shoot out at speeds approaching the speed of light. The jets can spread for thousands of light-years, with one jet emerging from each of the black hole's poles in a phenomenon thought to be related to the black hole's spin.

Scientists observing the compact radio core of M87 have discovered new details about the galaxy’s supermassive black hole. In this artist’s conception, the black hole’s massive jet of matter is seen rising up from the center of the black hole. The observations on which this illustration is based represent the first time that the jet and the black hole shadow have been imaged together, giving scientists new insights into how black holes can launch these powerful jets. S. Dagnello (NRAO/AUI/NSF)

Read more