Skip to main content

See the dark pillar of the Cone Nebula captured by the Very Large Telescope

A stunning image of a distant nebula has been taken using the Very Large Telescope. The Cone Nebula, located 2,700 light-years away in the constellation of Monoceros (the Unicorn), is huge in size at 7 light-years long. The Cone Nebula is next to the beautiful Christmas Tree cluster, also known as NGC 2264.

The image was shared by the European Southern Observatory (ESO) in celebration of its formation 60 years ago. ESO operates ground-based telescopes in Chile including the Very Large Telescope, the Atacama Large Millimeter Array, and the New Technology Telescope.

The Cone Nebula.
The Cone Nebula is part of a star-forming region of space, NGC 2264, about 2500 light-years away. Its pillar-like appearance is a perfect example of the shapes that can develop in giant clouds of cold molecular gas and dust, known for creating new stars. This dramatic new view of the nebula was captured with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument on ESO’s Very Large Telescope (VLT), and released on the occasion of ESO’s 60th anniversary. ESO

The Very Large Telescope was able to capture this image using its FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument which operates in the visible light wavelength. Using different filters, different elements can be color-coded so that in this image hydrogen is seen in blue and sulfur in red. The bright yellow-looking stars in the image would normally appear blue as they are very young and bright, being born in the swirl of dust and gas of the nebula.

Recommended Videos

“The Cone Nebula is a perfect example of the pillar-like shapes that develop in the giant clouds of cold molecular gas and dust, known for creating new stars,” ESO writes. “This type of pillar arises when massive, newly formed bright blue stars give off stellar winds and intense ultraviolet radiation that blow away the material from their vicinity. As this material is pushed away, the gas and dust further away from the young stars gets compressed into dense, dark and tall pillar-like shapes. This process helps create the dark Cone Nebula, pointing away from the brilliant stars in NGC 2264.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
See the stunning Rosette Nebula in all its glorious colors
Rosette Nebula Captured with DECam

This gorgeous image shows a fiery stunner called the Rosette Nebula that's located 5,000 light-years away from Earth. Imaged by the Dark Energy Camera (DECam) instrument on the Víctor M. Blanco 4-meter Telescope in Chile, this cloud of dust and gas acts as a stellar nursery and houses a young star cluster at its center.

Unlike other telescopes, such as the James Webb Space Telescope, which looks in the infrared wavelength, the DECam looks in the optical wavelength, so it sees similar colors to what the human eye would perceive. The colors in this image are so bright and vivid due to the starlight from the massive young stars in the cluster, which give off large amounts of ultraviolet radiation, thereby ionizing nearby hydrogen gas. The ionized gas glows brightly, giving the nebular its striking appearance.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more