Skip to main content

Tidally locked exoplanets could be habitable in the ‘terminator zone’

Exoplanets can have all sorts of strange environments, and one feature which is relatively common to find among exoplanets but doesn’t exist among planets in our solar system is tidal locking. This is where one side of the planet always faces its star and the other side always faces out into space, so one side gets incredibly hot while the other side is freezing cold. That doesn’t sound like a comfortable environment for life, but recent research shows that it is possible that these exoplanets could be habitable in the narrow band which separates the two sides.

Known as the “terminator zone,” this is the ring around a planet between the hot side, called the dayside, and the cold side, called the nightside. This zone separates two vastly different climates. “This is a planet where the dayside can be scorching hot, well beyond habitability, and the night side is going to be freezing, potentially covered in ice. You could have large glaciers on the night side,” explained the lead researcher, Ana Lobo of the University of California, Irvine, in a statement.

An artist's rendition of the terminator zone of an exoplanet.
Some exoplanets have one side permanently facing their star while the other side is in perpetual darkness. The ring-shaped border between these permanent day and night regions is called a “terminator zone.” In a new paper in The Astrophysical Journal, physics and astronomy researchers at UC Irvine say this area has the potential to support extraterrestrial life. Ana Lobo / UCI

The researchers modeled such planets using the same software used to model Earth’s climate but adjusted for factors like planetary rotation. They found that despite the existence of extreme temperatures nearby, the terminator zone could be an appropriate temperature for liquid water to exist on the surface — the essential component for potential habitability.

Recommended Videos

However, there needs to be a balance of water and land on the planet for this to work. If the planet is mostly covered in water, it would evaporate from the dayside and shroud the planet in vapor. But if enough land is present, this acts as a stabilizing force to allow liquid water to stay on the surface.

“We are trying to draw attention to more water-limited planets, which despite not having widespread oceans, could have lakes or other smaller bodies of liquid water, and these climates could actually be very promising,” Lobo said.

This research is exciting because it broadens the range of planets that we could examine when looking for evidence of life beyond Earth. Tidally locked planets often exist around M-dwarf stars, which are dimmer than our sun and are some of the most common stars in the galaxy. If any of these stars host such planets, the pool of exoplanets where we can search for life expands considerably.

“By exploring these exotic climate states, we increase our chances of finding and properly identifying a habitable planet in the near future,” said Lobo.

The research is published in The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Astronomers discover a super-Earth located in the habitable zone
This illustration shows one way that planet TOI-715 b, a super-Earth in the habitable zone around its star, might appear to a nearby observer.

Astronomers have discovered a type of exoplanet called a "super-Earth" located in the habitable zone of its small star, and it's right in our cosmic backyard, just 137 light-years away. The planet, named TOI-715 b, is intriguing to astronomers who are increasingly interested in the possibility of habitable planets orbiting stars quite different from our sun.

Although it might seem to make sense to look for potentially habitable planets when looking for Earth-like planets orbiting sun-like stars, those aren't the only targets that astronomers are interested in. One issue is that most discovered exoplanets are much larger than Earth, partly because it is so hard to detect smaller planets. Another issue is that the most common star in our galaxy by far is not a yellow dwarf star like our sun, but a smaller, dimmer, redder type called a red dwarf. When researchers discover rocky planets orbiting around red dwarfs, a few of which have been identified to date, that increases the pool of potentially habitable worlds that could be out there.

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more