Skip to main content

Astronomers discover Earth-sized exoplanet covered in volcanoes

Astronomers have discovered an Earth-sized planet that is highly volcanically active — an unusual finding that means it could possibly support life. The newly discovered planet, LP 791-18d, is thought to be covered in volcanoes and could be as active as Jupiter’s moon Io, which is the most volcanically active body in our solar system.

Exoplanet LP 791-18 d, illustrated in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io.
Exoplanet LP 791-18 d, shown in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug on the exoplanet that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io. NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

While we generally associate volcanoes with destruction, they can in fact be an important part of making a planet habitable because of the way they help create and sustain an atmosphere. It isn’t yet known if this particular planet has an atmosphere, but the volcanic activity makes it more likely. It is located within the habitable zone, where water could potentially exist on its surface.

Recommended Videos

It was discovered using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the now-retired Spitzer Space Telescope, which observed a small red dwarf star located 90 light-years away.

Some of the distinctive features of the planet have to do with how it rotates around its star, with one side always facing inward and the other side always facing outward. That leads to extreme conditions on the two sides of the planet. “LP 791-18 d is tidally locked, which means the same side constantly faces its star,” explained lead researcher Björn Benneke in a statement. “The day side would probably be too hot for liquid water to exist on the surface. But the amount of volcanic activity we suspect occurs all over the planet could sustain an atmosphere, which may allow water to condense on the night side.”

It is thought that the planet could be volcanically active because of the other planets in the same star system, LP 791-18 b and c. Planet c in particular passes very close to planet d during its orbit, which could be creating internal friction inside the planet and heating it up, causing volcanoes to be active on its surface. This relationship between the interior of a planet and active volcanoes has the interest of scientists who are studying conditions for life.

“A big question in astrobiology, the field that broadly studies the origins of life on Earth and beyond, is if tectonic or volcanic activity is necessary for life,” said co-author Jessie Christiansen. “In addition to potentially providing an atmosphere, these processes could churn up materials that would otherwise sink down and get trapped in the crust, including those we think are important for life, like carbon.”

For a next step, researchers plan to use the James Webb Space Telescope to observe the exoplanet and see if it does indeed have an atmosphere.

“The discovery of an Earth-size planet in the habitable zone that is potentially volcanically active is a huge step forward in the search for life outside the solar system,” said another of the researchers, Mohamad Ali-Dib. “The next step is to observe the system using the [James Webb Space Telescope] to see what it can tell us about its atmosphere.”

The research is published in the journal Nature.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
First indications of a rare, rainbow ‘glory effect’ on hellish exoplanet
For the first time, potential signs of the rainbow-like ‘glory effect’ have been detected on a planet outside our Solar System. Glory are colourful concentric rings of light that occur only under peculiar conditions. Data from ESA’s sensitive Characterising ExOplanet Satellite, Cheops, along with several other ESA and NASA missions, suggest this delicate phenomenon is beaming straight at Earth from the hellish atmosphere of ultra-hot gas giant WASP-76b, 637 light-years away.

Just from looking at our own solar system, we can see that planets come in a wide variety of colors -- from the dusty red of Mars to the bright blues of Uranus and Neptune. Planets like Jupiter have beautiful bands of color caused by variations in the atmosphere, while it's hard to even see the surface of Venus because its atmosphere is so thick. But there are other variations in color which planets can display, like a stunning rainbow-hued set of circular rings called a glory.

Glories are observed on Earth, and have been seen just once on another planet, Venus. But now, researchers believe they may have identified a glory on a planet outside our solar system for the first time. The extreme exoplanet WASP-76b could be host to the first known extrasolar glory, observed by the European Space Agency (ESA)'s Characterising ExOplanet Satellite (Cheops).

Read more
Dramatic images show a large satellite tumbling toward Earth
ESA's ERS-2 satellite tumbling toward Earth.

An illustration of the European Space Agency's ERS-2 satellite. ESA

The European Space Agency (ESA) has shared remarkable images showing one of its satellites in what it describes as a “tumbling descent.”

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more