Skip to main content

Molten ring in space allows Hubble to peer 9 billion years into the past

Gravity warps space in strange and counter-intuitive ways, and the bigger the source of gravity, the bigger the warping. One example of gravity’s optical illusions is beautiful rings in space named Einstein rings, one of which was recently captured by the Hubble Space Telescope.

Named for the physicist who predicted gravity’s strange stretching influence on space, studying rings like the one shown below can help astronomers peer out far into the distance, seeing a galaxy as it looked over 9 billion years ago.

Image, taken with the NASA/ESA Hubble Space Telescope, depicts GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace).
The narrow galaxy elegantly curving around its spherical companion in this image is a fantastic example of a truly strange and very rare phenomenon. This image, taken with the NASA/ESA Hubble Space Telescope, depicts GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace). GAL-CLUS-022058s is the largest and one of the most complete Einstein rings ever discovered in our Universe. ESA/Hubble & NASA, S. Jha; Acknowledgement: L. Shatz

The object might look like a ring, but the source of the light is actually a regular old galaxy. The ring shape forms due to a phenomenon called gravitational lensing, in which the light from the distant galaxy is warped by the gravity of a galaxy cluster in between it and us.

Recommended Videos

Not only does this phenomenon change the apparent shape of the galaxy, but it also magnifies and brightens it. The galaxy appears 20 times brighter due to the lensing effect, which allowed Hubble to image it with the equivalent of an enormous 48-meter-aperture telescope.

This particular ring is formally known as GAL-CLUS-022058s, but it has a more colloquial nickname as well: The Molten Ring, which is appropriately located in the constellation of Fornax (the Furnace). This image was shared as a Hubble picture of the week in December last year, and since then researchers have been studying the ring using other tools as well like the European Southern Observatory’s Very Large Telescope (VLT) FORS instrument.

By looking at this ring, researchers can learn about a very distant galaxy, effectively looking back in time to when the universe was less than half of its current age. This period was a busy, active one in which many stars were being born.

“The lensed galaxy is one of the brightest galaxies in the millimeter wavelength regime,” said one of the authors, Helmut Dannerbauer of the Institute of Astrophysics of the Canary Islands in Spain. “Our research has also shown that it is a normal star-forming galaxy (a so-called main sequence galaxy) at the peak epoch of star formation in the Universe.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Webb and Hubble work together to image the Christmas Tree Galaxy Cluster
This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, in general the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created.

Different telescopes work at different wavelengths, meaning they can observe different objects in the sky -- and when data from various telescopes is combined, it can make for stunning views that would be impossible to get from any one instrument. That's the case with a beautiful new image of a cluster of thousands of galaxies that combines data from both the Hubble Space Telescope and the James Webb Space Telescope to create a stunning and colorful view.

This panchromatic view of galaxy cluster MACS0416 was created by combining infrared observations from NASA’s James Webb Space Telescope with visible-light data from NASA’s Hubble Space Telescope. To make the image, the shortest wavelengths of light were color-coded blue, the longest wavelengths red, and intermediate wavelengths green. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies that could be described as one of the most colorful views of the universe ever created. NASA, ESA, CSA, STScI, Jose M. Diego (IFCA), Jordan C. J. D'Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

Read more
Webb telescope captures Ring Nebula in gorgeous detail
The Ring Nebula captured by Webb’s IRCam (Near-Infrared Camera).

The James Webb Space Telescope has just served up a couple more sublime images, this time showing the Ring Nebula in astonishing detail.

First spotted in the 18th Century and located around 2,500 light-years from Earth, the Ring Nebula’s colorful main ring is made up of gas thrown off by a dying star at the center of the nebula.

Read more
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more