Skip to main content

Three galaxies are in the process of merging in this Hubble image

This week’s image from the Hubble Space Telescope shows a dramatic collision of three different galaxies. The trio, located in the Boötes constellation, are in the process of merging and will eventually form one single large galaxy.

A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope.
A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background. ESA/Hubble & NASA, M. Sun

“This colliding trio – known to astronomers as SDSSCGB 10189 – is a relatively rare combination of three large star-forming galaxies lying within only 50,000 light-years of one another,” Hubble scientists write. “While that might sound like a safe distance, for galaxies this makes them extremely close neighbors. Our own galactic neighbors are much further away; Andromeda, the nearest large galaxy to the Milky Way, is more than 2.5 million light-years away from Earth.”

Recommended Videos

Galactic collisions, when two or more galaxies meet each other, are not uncommon in the universe. The results of these enormous collisions can be varied, with either the galaxies merging to form a new larger galaxy, as is the case here, or one galaxy annihilating another.

Although it’s unlikely that stars from each galaxy will collide, because of the amount of space between each star, the heart of most galaxies contains a supermassive black hole, and the merging of these huge beasts can give off gravitational waves and send stars flying off in strange directions.

Typically if a larger galaxy collides with a smaller satellite galaxy, the larger galaxy will strip away stars and material from the smaller galaxy and maintain most of its shape. In other cases, the enormous gravitational forces involved in a collision can pull one or both galaxies into strange shapes.

Our own galaxy, the Milky Way, will collide with the nearby Andromeda galaxy in around 4 billion years’ time. This collision may also involve another nearby galaxy, the Triangulum galaxy, which could be pulled into orbit around the merger as well before eventually colliding as well.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more
Hubble will switch to a new mode to preserve its troublesome gyros
An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009.

An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009. NASA

The beloved Hubble Space Telescope will soon be changing the way it operates by limiting the speed at which it can target new objects in order to preserve its lifespan for as long as possible.

Read more
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more