Skip to main content

A baby star’s energetic outburst captured by Hubble

This week’s image from the Hubble Space Telescope shows the dramatic and energetic jets given off by a young star, forming a wispy structure called a Herbig-Haro object. The image shows object HH34, located 1,250 light-years away in the Orion Nebula. The Orion Nebula is a site of active star formation and as it is bright enough to be seen even by the naked eye, it is often studied to learn about the formation of stars.

A Herbig-Haro object is formed when a young, particularly energetic star ejects particles of ionized gas in epic jets. These jets typically eject from opposite sides of the star, illuminating gas and dust around them which glows in beautiful colors. These jets are so powerful they can travel at hundreds of miles per second, meaning they spread far beyond the star and form these long, thin shapes which can be seen from great distances.

An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope.
An energetic outburst from an infant star streaks across this image from the NASA/ESA Hubble Space Telescope. This stellar tantrum – produced by an extremely young star in the earliest phase of formation – consists of an incandescent jet of gas traveling at supersonic speeds. As the jet collides with material surrounding the still-forming star, the shock heats this material and causes it to glow. ESA/Hubble & NASA, B. Nisini

These objects can change rapidly over short periods of time as well, just as this one has done. “Herbig–Haro objects are seen to evolve and change significantly over just a few years,” Hubble scientists write. “This particular object, called HH34, was previously captured by Hubble between 1994 and 2007, and again in glorious detail in 2015.”

Recommended Videos

If you look at the previous image of HH34, captured in 2015, you can see how the object has changed in the handful of years since then. Most astronomical objects like stars tend to change over periods of thousands of years or more, so to see an object changing so rapidly is a rarity.

By looking at objects like HH34 astronomers can learn about the formation of stars and the jets of energy they can give off. This topic will be studied in more depth using the James Webb Space Telescope, which is able to look through the clouds of dust surrounding newly-born stars using its infrared instruments, to observe the newborns up close.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more