Skip to main content

Hubble spots a massive star forming amid clouds of dust and gas

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

 This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959. ESA/Hubble & NASA, R. Fedriani, J. Tan

“Observations from Hubble’s Wide Field Camera 3 make up this image,” NASA explains in a release. “Its detailed nuance of color is the result of four separate filters. These thin slivers of highly specialized material can slide in front of the instrument’s light sensors, allowing very specific wavelengths of light to pass through with each observation. This is useful because certain wavelengths of light can tell us about the region’s composition, temperature, and density.”

Recommended Videos

Much of the dust and gas in the image glows brightly in the visible light and near-infrared wavelengths in which Hubble’s instruments operate. However, there are dark regions in the area, such as the black spot toward the top left of the image. These regions aren’t actually empty, however — they are, in fact, full of dust. There is so much dust in the regions that it is blocking out the near-infrared light, making them opaque. Despite this, scientists have reason to believe that there is a massive star at the center of this region because they can see the powerful jets of material that it is throwing off, which sculpt the area by pushing away the dust and gas.

Please enable Javascript to view this content

Young protostars can give off enormously powerful jets as they develop, and over time, they continue to attract more dust and increase in mass until their cores reach a temperature of around 10 million degrees Kelvin. At this temperature, they begin to fuse hydrogen and become a full adult star, called a main sequence star.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble will switch to a new mode to preserve its troublesome gyros
An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009.

An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009. NASA

The beloved Hubble Space Telescope will soon be changing the way it operates by limiting the speed at which it can target new objects in order to preserve its lifespan for as long as possible.

Read more
Hubble catches a baby star pulsating in a triple star system
This NASA Hubble Space Telescope image captures a triple-star star system.

This NASA Hubble Space Telescope image shows a triple-star star system. NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

A gorgeous new image from the Hubble Space Telescope shows a triple star system, where three stars are working in tandem to create a reflection nebula. The trio of stars are located 550 light-years away, and include one particular star, HP Tau, that is like a younger version of our sun and will eventually grow up to be a similar hydrogen-fueled star in millions of years' time.

Read more
Celebrate Hubble’s 34th birthday with this gorgeous nebula image
In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. The name 'Little Dumbbell' comes from its shape that is a two-lobed structure of colorful, mottled, glowing gases resembling a balloon that’s been pinched around a middle waist. Like an inflating balloon, the lobes are expanding into space from a dying star seen as a white dot in the center. Blistering ultraviolet radiation from the super-hot star is causing the gases to glow. The red color is from nitrogen, and blue is from oxygen.

Tomorrow, April 24, marks the 34th anniversary of the launch of the Hubble Space Telescope. For more than three decades, this venerable old telescope has been peering out into space, observing stars, galaxies, and nebulae to understand more about the universe we live in. To celebrate this birthday, Hubble scientists have shared a new image showing the striking Little Dumbbell Nebula, also known as Messier 76, which is located 3,400 light-years away.

In celebration of the 34th anniversary of the launch of NASA’s legendary Hubble Space Telescope, astronomers took a snapshot of the Little Dumbbell Nebula, also known as Messier 76, or M76, located 3,400 light-years away in the northern circumpolar constellation Perseus. NASA, ESA, STScI

Read more