Skip to main content

Hubble captures an irregular galaxy shaped by an epic supernova explosion

A new image captured by the Hubble Space Telescope shows the galaxy NGC 2442, which has a distinctive and unusual shape formed when it was the site of a massive supernova explosion.

Identified by astronomers in March 2015, the supernova SN2015F resulted from the explosion of a white dwarf star, which was part of a binary system, in which two stars orbit around the same point. As the white dwarf reached the end of its life, it pulled matter away from its companion star, and eventually pulled in so much matter that it triggered an absolutely enormous supernova.

This image from the NASA/ESA Hubble Space Telescope features the spectacular galaxy NGC 2442.
This image from the NASA/ESA Hubble Space Telescope features the spectacular galaxy NGC 2442. ESA/Hubble & NASA, S. Smartt et al.

“SN2015F was spotted in March 2015 in the galaxy named NGC 2442, nicknamed the Meathook Galaxy owing to its extremely asymmetrical and irregular shape,” the Hubble scientists said in a statement sharing the new image. “The supernova shone brightly for quite some time and was easily visible from Earth through even a small telescope until later that summer. ”

Recommended Videos

A Type Ia supernova like SN2015F happens when a star, like the white dwarf in NGC 2442, is part of a binary system along with another star that orbits relatively close to the white dwarf. The white dwarf siphons material in the form of gas off its companion with the force of gravity, sucking up this extra matter and incorporating it into its own mass. As it sucks up more and more gas, the white dwarf experiences more and more pressure and is compressed by the forces of gravity.

Please enable Javascript to view this content

Eventually, this accumulation of matter and increasing compression reaches a critical mass and sets off a chain reaction. Nuclear fusion of carbon and oxygen happens in a runaway manner and very quickly releases a tremendous amount of energy, sending an enormous shock wave hurtling through space in all directions.

Supernovae can leave behind a huge cloud of dust and gas, called a supernova remnant, and either a neutron star or, if the original star was large enough at about five times the mass of our sun, it may instead leave behind a black hole where the star once was.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble takes first image since switching to new pointing mode
This NASA Hubble Space Telescope features the galaxy NGC 1546.

This NASA Hubble Space Telescope captured an image of the galaxy NGC 1546. NASA, ESA, STScI, David Thilker (JHU)

The Hubble Space Telescope has been through some troubles of late, and the way that it operates had to be changed recently to compensate for some degraded hardware. The telescope's three gyros, which help it to switch between different targets in the sky, have been experiencing issues, with one in particular frequently failing over recent months. NASA made the decision recently to change the way that Hubble points, and it now uses just one gyro at a time instead of all three in order to preserve the two remaining gyros for as long as possible.

Read more
Hubble will switch to a new mode to preserve its troublesome gyros
An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009.

An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009. NASA

The beloved Hubble Space Telescope will soon be changing the way it operates by limiting the speed at which it can target new objects in order to preserve its lifespan for as long as possible.

Read more
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more