Skip to main content

Hubble identifies a 10-billion-year-old pair of quasars in merging galaxies

Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration.
Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva

When galaxies get close enough together, they can collide in epic events which can destroy one or lead to the two merging into a larger galaxy. And sometimes, on very rare occasions, the two galaxies might both include a quasar — an extremely bright galactic core formed around a supermassive black hole, so luminous it can shine brighter than the entire rest of the galaxy.

Now, a new study has identified not one but two pairs of quasars in galaxies that are merging. By studying these two pairs, which are extremely far away and are thus around 10 billion years old, astronomers can learn more about how galaxies and their supermassive black holes merge.

Recommended Videos

“We estimate that in the distant Universe, for every one thousand quasars, there is one double quasar. So finding these double quasars is like finding a needle in a haystack,” said Yue Shen of the University of Illinois at Urbana-Champaign, lead author of the paper, in a statement.

Astronomers believe that quasars were more common around 10 billion years ago, and there were many galactic mergers happening. That means it’s more likely to find pairs of quasars from this particular period.

“This truly is the first sample of dual quasars at the peak epoch of galaxy formation with which we can use to probe ideas about how supermassive black holes come together to eventually form a binary,” said research team member Nadia Zakamska of Johns Hopkins University.

The researchers discovered the pairs of quasars using the instruments including Hubble Space Telescope and the Gaia space observatory. The quasar pairs are so close together they appear to be one object until the researchers looked closer using Hubble.

Now astronomers will be able to use these pairs to learn more about the formation of galaxies. “Quasars make a profound impact on galaxy formation in the universe,” Zakamska said. “Finding dual quasars at this early epoch is important because we can now test our long-standing ideas of how black holes and their host galaxies evolve together.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects -- but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it's possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

Read more