Skip to main content

Telescope team-up sees Hubble and Webb working together

After two images we shared last week showed how scientific knowledge can be increased by tools like the Hubble Space Telescope and the James Webb Space Telescope imaging the same target separately, this week sees a project in which data from the two telescopes has been brought together.

Both telescopes were trained on the galaxy pair VV 191 and showed how light from the elliptical galaxy on the left filters through the dusty arms of the spiral galaxy on the right. That allowed researchers to learn about the dust in the spiral galaxy. “This is a rather unique opportunity to measure how much dust has been produced in this spiral galaxy, like our own, by previous generations of stars,” explained lead researcher Rogier Windhorst of Arizona State University in a statement. “Mind you that this is the kind of dust that the next generation of stars and planets, and in our case people, are also formed from.”

Galaxy pair VV 191 imaged by Hubble and Webb.
By combining data from NASA’s James Webb Space Telescope and NASA’s Hubble Space Telescope, researchers were able to trace light that was emitted by the large white elliptical galaxy at left through the spiral galaxy at right and identify the effects of interstellar dust in the spiral galaxy. This image of galaxy pair VV 191 includes near-infrared light from Webb, and ultraviolet and visible light from Hubble. SCIENCE: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team IMAGE PROCESSING: Alyssa Pagan (STScI)

Hubble observes primarily in the visible light and ultraviolet portions of the electromagnetic spectrum, while Webb looks at the infrared range which is beyond human vision. In pairing up data from both telescopes, researchers used Hubble data for bluish tones in the image and Webb data to pick up on the dust features.

Recommended Videos

“We got more than we bargained for by combining data from NASA’s James Webb Space Telescope and NASA’s Hubble Space Telescope,” Windhorst said.

That included some surprising findings, like a red smudge to the northwest position of the left-hand galaxy. That smudge is actually another extremely distant galaxy, which has been magnified and distorted in a phenomenon called gravitational lensing. You can even just about see its reflection as a dot at the southeast position relative to the foreground galaxy.

“I find it astonishing how Webb can provide for completely unexpected findings, such as the lensed galaxy behind the elliptical galaxy in the VV191 system, with relative ease and with only half an hour of exposure time,” said another of the researchers, Jake Summers, also of Arizona State. “The resolution of Webb never ceases to amaze me — I was blown away by the fact that it can resolve individual globular clusters in the main elliptical galaxy.”

The research has been submitted to The Astrophysical Journal but has not yet been peer-reviewed or published.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
Event Horizon Telescope can now take images of black holes that are 50% sharper
Illustration of the highest-resolution detections ever made from the surface of Earth

The Event Horizon Telescope project, the group that took the first-ever image of a black hole, has made another historic breakthrough, making the highest-ever resolution observations of space taken from the Earth's surface. The project uses facilities around the globe to turn the Earth itself into a giant observatory, which is capable of taking highly precise measurements of distant galaxies.

The latest observations made use of the Atacama Large Millimeter/submillimeter Array (ALMA), a large array of radio telescopes located in Chile, as well as other facilities in Spain, France, and Hawaii. To get higher-resolution images than previous observations, scientists weren't able to make the telescope bigger -- as it was already the size of the Earth -- so they observed at a higher frequency instead.

Read more