Skip to main content

NASA learns how the Ingenuity helicopter ended up crashing on Mars

NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image). NASA/JPL-Caltech/LANL/CNES/CNRS

Earlier this year, the NASA helicopter Ingenuity came to the end of its mission after an incredible 72 flights on Mars. The helicopter flew a remarkable 30 times farther than planned, and was the first rotocopter to fly on another planet, proving that exploring distant worlds from the air is possible. Now, NASA has revealed new details about what exactly caused the crash that brought the mission to an end, and what it learned about flying helicopters for future missions.

The final flight of Ingenuity took place on January 18, 2024, when the helicopter rose briefly into the air in a maneuver called a hop. The helicopter was fitted with a number of cameras, and shadows cast onto the planet’s surface revealed that one of the helicopter’s rotor blades was missing, having apparently separated at the mast. But it wasn’t certain what had caused this damage.

Recommended Videos

“When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of NASA’s Jet Propulsion Laboratory. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”

Please enable Javascript to view this content

The problem seems to be, ironically enough, that the ground beneath the helicopter was too smooth and featureless. The helicopter had to be able to maneuver itself autonomously, due to the communications lag between Earth and Mars, so it used data from a downward-facing camera to track its movement across the surface. With no features on the surface during this particular flight, the helicopter’s computer could not accurately track its velocity, and it landed too hard, which caused the damage.

Further investigation found that the likely problem was that Ingenuity hit the surface too hard, then pitched to one side and rolled over. That meant weight was put onto the very light and delicate rotor blades, causing all four of them to snap at the tips. That created vibrations in the system, which ripped one blade off its mast completely.

This means Ingenuity can no longer fly, but it does still transmit data about weather conditions to the nearby Perseverance rover once per week. That’s impressive considering its electronics were fairly basic.

“Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”

The Ingenuity mission was such a considerable success that NASA is already planning more rotorcraft missions in the future. One idea is for another Mars helicopter to be used as part of the Mars Sample Return program, which would be larger and heavier than Ingenuity and could carry science equipment in its explorations.

“Ingenuity has given us the confidence and data to envision the future of flight at Mars,” Tzanetos said.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Check out this incredible cloud atlas of Mars
Arsia Mons Elongated Cloud (AMEC): This elongated cloud has formed as a result of wind encountering the Arsia Mons mountains. It forms almost every day during a specific season, from early morning until noon.

Photographing a beautiful sky is a great passion for many here on Earth, but it can be just as striking on another planet too. Researchers recently presented a stunning new "cloud atlas" of Mars: a database containing 20 years' worth of images of clouds and storms observed on the red planet.

The cloud atlas is available online, inviting you to browse the many images of martian weather captured by the Mars Express spacecraft. This European Space Agency mission has been in orbit around Mars since 2005, and has taken hundreds of images of the planet using its High Resolution Stereo Camera (HRSC) instrument.

Read more
How to watch NASA’s oldest active astronaut launch to the ISS on Wednesday
NASA astronaut Don Pettit.

NASA Astronaut Don Pettit Soyuz MS-26 Launch

Don Pettit isn't your average senior citizen. Instead of enjoying life in the slow lane, he's getting ready for a rocket ride to the International Space Station (ISS) on Wednesday.

Read more
Perseverance rover gears up for a big climb to the rim of the Jezero Crater
One of the navigation cameras aboard NASA’s Perseverance Mars rover captured this view looking back at the “Bright Angel” area on July 30, the 1,224th Martian day, or sol, of the mission.

The Perseverance rover on Mars is set to begin its newest challenge: a slog up the rim of the Jezero Crater that will take months to complete. The rover will face steep slopes and difficult terrain, testing its wheels and suspension system, but its efforts should help to uncover rocks from the most ancient part of the Mars crust.

Since the rover landed in the Jezero Crater in 2021, it has been exploring the floor of the crater and the site of an ancient river delta. This area was chosen because it was once home to an ancient lake, so the rock cores that the rover has collected will help to uncover information about the history of water on Mars -- which is vital to determine if the planet could ever have been habitable.

Read more