Skip to main content

James Webb spots two of the earliest galaxies ever seen

The James Webb Space Telescope has discovered two of the earliest galaxies ever seen in the universe, and they are much brighter than expected, meaning astronomers are rethinking their beliefs about how the earliest stars formed.

“These observations just make your head explode,” said Paola Santini, one of the researchers, in a statement. “This is a whole new chapter in astronomy. It’s like an archaeological dig, when suddenly you find a lost city or something you didn’t know about. It’s just staggering.”

Two of the most distant galaxies seen to date are captured in these Webb pictures of the outer regions of the giant galaxy cluster Abell 2744. The galaxies are not inside the cluster, but many billions of light-years behind it. 
Two of the most distant galaxies seen to date are captured in these Webb pictures of the outer regions of the giant galaxy cluster Abell 2744. The galaxies are not inside the cluster, but many billions of light-years behind it. NASA, ESA, CSA, T. Treu (UCLA)

The two galaxies are thought to be billions of years old, from just 100 million years after the Big Bang. Webb is able to look back at some of the earliest galaxies, because it operates in the infrared range, meaning it can see galaxies that are redshifted.

Recommended Videos

Redshift happens when light from a distant galaxy is shifted to the red end of the spectrum because of the expansion of the universe. The stronger the shift, the more distant the galaxy. The light from some galaxies is shifted so far that it moves out of the visible light spectrum and into the infrared, where Webb can see it. Previous research had estimated that some galaxies Webb detected could have a redshift as high as 14, but the recent results are more accurate thanks to better calibration of the instruments and suggest a redshift for the two galaxies of 10.5 and 12.5, respectively.

Webb also takes advantage of a phenomenon called gravitational lensing, in which a massive object like a galaxy or galaxy cluster has so much mass that it warps space and acts like a magnifying glass, allowing researchers to see even more distant galaxies behind it.

The big surprise is that both of the galaxies observed are much brighter than researchers had thought they would be. They were also spotted very quickly, in the first few days of Webb observations, suggesting that early galaxies could be more numerous than previously thought.

“We’ve nailed something that is incredibly fascinating. These galaxies would have had to have started coming together maybe just 100 million years after the Big Bang. Nobody expected that the dark ages would have ended so early,” said another of the researchers, Garth Illingworth. “The primal Universe would have been just one hundredth of its current age. It’s a sliver of time in the 13.8-billion-year-old evolving cosmos.”

The researchers suggest that either the early galaxies could be much more massive than thought, with many more stars than expected, or that they could be less massive but with stars that shined very brightly and are quite different from the stars we see today. To learn more and to confirm the age of these universes, the researchers plan to perform more observations with Webb’s spectroscopy instruments.

“Everything we see is new. Webb is showing us that there’s a very rich universe beyond what we imagined,” said researcher Tommaso Treu. “Once again the universe has surprised us. These early galaxies are very unusual in many ways.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Citizen scientists spot mysterious object shooting out of the galaxy at 1 million mph
This artist's concept shows a hypothetical white dwarf, left, that has exploded as a supernova. The object at right is CWISE J1249, a star or brown dwarf ejected from this system as a result of the explosion. This scenario is one explanation for where CWISE J1249 came from.

Citizen scientists have helped to identify an incredibly fast-moving object in space, which is traveling at such a speed that it will shoot out of the Milky Way and head out into intergalactic space.

Amateur astronomers working on the Backyard Worlds: Planet 9 project spotted the object, which was also observed by the recently-retired NASA NEOWISE telescope. The trio of citizen scientists -- Martin Kabatnik, Thomas P. Bickle, and Dan Caselden -- spotted the object named CWISE J124909.08+362116.0 several years ago, and now it has been confirmed they are co-authors on a paper about its discovery.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more