Skip to main content

James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities — like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b.
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day. NASA, ESA, CSA, J. Olmsted (STScI)

Astronomers were able to get an excellent view of the planet because instead of orbiting one star like the planets in our solar system, this planet orbits a pair of stars and it takes 10,000 years to complete a full orbit. That means it is far away from the light of its stars, so it is easier for astronomers to see the planet’s relatively dim reflected light.

Recommended Videos

“VHS 1256 b is about four times farther from its stars than Pluto is from our Sun, which makes it a great target for Webb,” said science team lead Brittany Miles of the University of Arizona in a statement. “That means the planet’s light is not mixed with light from its stars.”

Please enable Javascript to view this content

Sand clouds are unusual, but not unheard of when it comes to exoplanets. In this case, the gritty clouds are located up high in the planet’s atmosphere, where temperatures reach an incredible 1,500 degrees Fahrenheit. The planet has low gravity as well, allowing the clouds of both larger and smaller grains to float high in the atmosphere.

“The finer silicate grains in its atmosphere may be more like tiny particles in smoke,” said co-author Beth Biller of the University of Edinburgh. “The larger grains might be more like very hot, very small sand particles.”

The researchers say that although they are excited by their findings, they want to do more research to understand the planet’s atmosphere. “We’ve identified silicates, but a better understanding of which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” Miles said. “This is not the final word on this planet — it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

The research is published in The Astrophysical Journal Letters.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more