Skip to main content

See the universe in stunning detail in first James Webb image

After years of planning and months in space, the James Webb Space Telescope has inaugurated a new era in astronomy. NASA today released the first science image from the world’s most powerful space telescope, showing the infrared universe in a depth never seen before.

“From the beginning of history, humans have looked up to the night sky with wonder,” Vice President Kamala Harris said in a briefing. “Now, we enter a new phase of scientific discovery. Building on the legacy of Hubble, the James Webb Space Telescope allows us to see deeper into space than ever before and in stunning clarity.” Harris also acknowledged the contributions of international partners in the building of Webb, which included NASA, the European Space Agency, and the Canadian Space Agency: “This telescope is one of humanity’s great engineering achievements,” she said.

Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail.
This first image from NASA’s James Webb Space Telescope is the deepest and sharpest infrared image of the distant universe to date. Known as Webb’s First Deep Field, this image of galaxy cluster SMACS 0723 is overflowing with detail. Thousands of galaxies – including the faintest objects ever observed in the infrared – have appeared in Webb’s view for the first time. This slice of the vast universe covers a patch of sky approximately the size of a grain of sand held at arm’s length by someone on the ground. NASA, ESA, CSA, and STScI

The image shows galaxy cluster SMACS 0723 and is the deepest infrared image of the distant universe to date. It shows the cluster as it would have been 4.6 billion years ago, and because the mass of the cluster is so great it bends spacetime and allows us to see even more distant galaxies behind it. As they are so distant the light is very faint, and these thousands of galaxies are among the faintest objects ever observed in infrared — captured thanks to Webb’s NIRCam instrument in a composite of observations taken over 12.5 hours to pick up this level of detail.

Recommended Videos

Unlike telescopes like Hubble which look primarily in the visible light range, equivalent to what would be seen by the human eye, Webb’s instruments operate in the infrared. This enables the telescope to look through opaque targets like clouds of dust to see what lies beneath, and it will be used to study nebulae, stars, black holes, and more.

Please enable Javascript to view this content

Webb’s instruments are so sensitive that they can observe extremely distant targets, which — because of the time it takes for light to travel from these great distances to Earth — is like looking back in time. Webb will search out some of the earliest galaxies in the universe, helping to elucidate a period called the Epoch of Reionization when the earliest stars spread light through the universe for the first time.

Deep field images like the one shown above help in the quest to find the earliest galaxies by identifying extremely distant galaxies in dim patches of the sky. Similar images will be produced by deep and wide surveys made using Webb, such as the upcoming COSMOS-Webb program.

The image released today is just a teaser of all that is to come from Webb. More images will be released tomorrow, including images of nebulae and a galaxy group, as well as a spectrum showing the composition of the atmosphere of an exoplanet. And there will be plenty more topics that Webb will study in its first year as well, giving astronomers glimpses into topics as wide-ranging as how stars are formed, the composition of comets in our solar system, and how the first black holes formed.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
See the stunning Rosette Nebula in all its glorious colors
Rosette Nebula Captured with DECam

This gorgeous image shows a fiery stunner called the Rosette Nebula that's located 5,000 light-years away from Earth. Imaged by the Dark Energy Camera (DECam) instrument on the Víctor M. Blanco 4-meter Telescope in Chile, this cloud of dust and gas acts as a stellar nursery and houses a young star cluster at its center.

Unlike other telescopes, such as the James Webb Space Telescope, which looks in the infrared wavelength, the DECam looks in the optical wavelength, so it sees similar colors to what the human eye would perceive. The colors in this image are so bright and vivid due to the starlight from the massive young stars in the cluster, which give off large amounts of ultraviolet radiation, thereby ionizing nearby hydrogen gas. The ionized gas glows brightly, giving the nebular its striking appearance.

Read more
See the wonders of the Milky Way in this new infrared map
The Lobster Nebula seen with ESO’s VISTA telescope.

The wonders of our galaxy are on full display in a new infrared map of the Milky Way, showing a stunning 1.5 billion objects using data collected over 13 years. Researchers used the European Southern Observatory (ESO)’s VISTA telescope to collect 500 terabytes of data, showing the nebulae, globular clusters, stars, planets, brown dwarfs, and other objects that make up our galaxy.

The VISTA telescope (Visible and Infrared Survey Telescope for Astronomy), located on the Paranal Observatory in Chile, has an infrared instrument called VIRCAM that is able to look through clouds of dust and gas to observe objects that would be invisible in the visible light wavelength. Since 2010, researchers have been using this instrument to observe the Milky Way. They observed each patch of the sky multiple times, so they could see not only the location of particular objects but also how they were moving over time.

Read more