If you look at the universe on a big enough scale, the billions of galaxies out there aren’t randomly scattered. Instead, they form a structure made up of galaxies and the gas between them, which are connected into filaments in a geometric-like pattern. This structure is known as the cosmic web, and it was created by the conditions at the start of the observable universe during the Big Bang.
The James Webb Space Telescope recently spotted some of the earliest evidence of this web, identifying some extremely old galaxies which were observed just 830 million years after the Big Bang and which are formed into a filament.
Researchers used Webb’s NIRCam instrument to identify the thread of 10 very early galaxies, which are strung together in a structure almost 3 million light-years long. Over time the filament will attract more galaxies and become a galaxy cluster.
“I was surprised by how long and how narrow this filament is,” said researcher Xiaohui Fan of the University of Arizona in a statement. “I expected to find something, but I didn’t expect such a long, distinctly thin structure.”
The researchers also looked at the development of black holes, observing eight galaxies with bright active supermassive black holes at their hearts called quasars. Even though they are from the early stages of the universe too, some of these black holes are up to 2 billion times the mass of our sun, and researchers are trying to figure out how they could have got so big so fast. This rate of growth requires an already massive black hole to feed on huge amounts of nearby matter.
“These unprecedented observations are providing important clues about how black holes are assembled,” said researcher Jinyi Yang of the University of Arizona. “We have learned that these black holes are situated in massive young galaxies that provide the reservoir of fuel for their growth.”
The results are published in two papers in The Astrophysical Journal.