Skip to main content

Stunning James Webb image shows the beating heart of our Milky Way

A new image from the James Webb Space Telescope shows the heart of our galaxy, in a region close to the supermassive black hole at the center of the Milky Way, Sagittarius A*. The image shows a star-forming region where filaments of dust and gas are clumping together to give birth to new baby stars.

The image was captured using Webb’s NIRCam instrument, a camera that looks in the near-infrared portion of the electromagnetic spectrum with shorter wavelengths shown in blue and cyan and longer wavelengths shown in yellow and red.

The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense centre. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet unidentified features. A vast region of ionised hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionised hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionised region, covering about 25 light-years. A cluster of protostars – stars that are still forming and gaining mass – are producing outflows that glow like a bonfire at the base of the large infrared-dark cloud, indicating that they are emerging from the cloud’s protective cocoon and will soon join the ranks of the more mature stars around them. Smaller infrared-dark clouds dot the scene, appearing like holes in the starfield. Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study. This includes the rose-coloured clouds on the right side of the image, which have never been seen in such detail.
The full view of the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C (Sgr C) region, along with some as-yet-unidentified features. NASA, ESA, CSA, STScI, S. Crowe (UVA)

This region is called Sagittarius C, and is located around 300 light-years away from the supermassive black hole Sagittarius A*. For reference, Earth is located much further away from the galactic center, at a distance of around 26,000 light years from Sagittarius A*.

Recommended Videos

There are thought to be as many as 500,000 stars in the Sagittarius C region, including many young protostars, some of which will go on to become main-sequence stars like our sun. As stars form, they give off powerful stellar winds which blow away nearby material and prevent more stars from forming very close to them.

These outflows are illuminated in the infrared wavelength, and the cyan-colored patches in the image are created by ionized gas. The young stars give off a great deal of energy, which ionizes the hydrogen gas around them and makes them glow in the infrared.

However, there are actually even more stars in this area than can be seen in the image. The pockets of darkness scattered throughout the image aren’t blank but are dense clouds that are dark in the infrared, including a large dense area in the heart of the region.

There are still some surprises to be found in the image too, with some features that scientists need to study in more depth. “Researchers say they have only begun to dig into the wealth of unprecedented high-resolution data that Webb has provided on this region, and many features bear detailed study,” Webb scientists write. “This includes the rose-colored clouds on the right side of the image, which have never been seen in such detail.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
ISS astronaut’s stunning time-lapse video includes the Milky Way
An image taken from the ISS showing featuring Earth, an aurora, the Milky Way, and the station itself.

A NASA astronaut aboard the International Space Station (ISS) has shared a breathtaking time-lapse video featuring Earth, an aurora, the Milky Way, and the station itself.

Matthew Dominick, who’s been on the orbital outpost since March, shared the amazing 27-second sequence (below) on social media on Sunday.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more