Skip to main content

James Webb’s MIRI instrument has both a heater and a cooler

The long process of getting the James Webb Space Telescope ready for science operations continues, with the ongoing alignment of three of its instruments.

Webb recently reached the major milestone of aligning its mirrors with its NIRCam instrument, in a successful step that promises great results to come. “Webb’s alignment at the NIRCam field showed some spectacular diffraction-limited images, producing a tantalizing glimpse of the capabilities this observatory will carry for its science program,” wrote two Webb researchers, Michael McElwain, Webb observatory project scientist, and Charles Bowers, Webb deputy observatory project scientist, both at NASA Goddard, in a recent blog post. “This was a major milestone because it required nearly all of the observatory systems to be functioning as designed. It all worked as well as we dared to hope, and it was certainly a moment to celebrate.”

Recommended Videos

Now, the Webb team is working on aligning two more of the instruments — the Near-Infrared Slitless Spectrograph (NIRISS) and Near-Infrared Spectrometer (NIRSpec) — as well as the guider, called the Fine Guidance Sensor (FGS). This process is expected to take around six weeks and will ensure that all of the instruments can work together. Along with NIRCam, these comprise Webb’s near-infrared instruments.

While the three near-infrared instruments are passively cooled — meaning that heat is dispersed from the telescope and into space using design elements like heat sinks which require no power — the fourth instrument, MIRI, works in the mid-infrared wavelength and requires active cooling. Because MIRI uses a different type of detector than the other instruments, and these detectors need to be at an extremely low temperature of less than 7 kelvin to work properly, the instrument needs to be fitted with a cryocooler. This refrigeration system uses helium gas and includes pumps that require power but must produce very little vibration to avoid interfering with instrument readings.

In addition to this cooling system, MIRI is also fitted with heaters so that the cooldown process can be carefully managed to prevent ice from forming on the components. The heaters will shortly be turned off, allowing the cooling system to bring the instrument down to its operating temperature.

With the cooling of MIRI underway, it will take a few weeks until the final instrument gets cool enough to be ready for alignment. Then, with all four of the instruments aligned, the Webb team can move onto the next phase of commissioning — optical stability tests and instrument performance measurement — to get the telescope ready for science operations this summer.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
NASA’s mega moon rocket has just begun a 900-mile journey
The core stage of NASA's SLS rocket.

NASA’s powerful Space Launch System (SLS) rocket is set to blast four astronauts to space next year on the epic Artemis II mission that will come within about 80 miles of the lunar surface.

In preparation for the mission, the rocket’s 213-foot-tall (65 meters) core stage has just embarked on a rather more leisurely journey -- on a barge heading for the Kennedy Space Center in Florida.

Read more