Skip to main content

See how James Webb instruments work together to create stunning views of space

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 — and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements — i.e., everything which isn’t hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

The irregular galaxy NGC 6822.
This image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. As their names suggest, NIRCam and MIRI probe different parts of the electromagnetic spectrum. This allows the instruments to observe different components of the same galaxy, with MIRI especially sensitive to its gas-rich regions (the yellow swirls in this image) and NIRCam suitable for observing its densely packed field of stars. ESA/Webb, NASA & CSA, M. Meixner

This image from Webb combines data from two of its instruments, the Near-InfraRed Camera (NIRCam) and the Mid-InfraRed Instrument (MIRI), to show off features like the clouds of dust (shown in yellow) and areas of active star formation (seen in red).

Recommended Videos

To understand how scientists build up images like this out of different observations, Webb researchers also released the individual views taken by NIRCam and MIRI. Because the two instruments look in different parts of the spectrum — NIRCam in the near-infrared and MIRI in the mid-infrared — they can pick out different features. When the two views are combined, they show even more detail than one view could alone.

The irregular galaxy NGC 6822.
This image shows the irregular galaxy NGC 6822, as observed by the Mid-InfraRed Instrument (MIRI) mounted on the NASA/ESA/CSA James Webb Space Telescope. MIRI probes the mid-infrared, which in this case makes it perfectly suited to observe the dense regions of gas that suffuse this galaxy. ESA/Webb, NASA & CSA, M. Meixner

This is the MIRI image, which highlights regions of dust that are more noticeable in the mid-infrared. The cooler areas of dust are in blue, while warmer dust clouds are seen in orange. And the different colors can help pick out different galaxies too, with nearby galaxies appearing green and more distant galaxies seen in orange. There is even a bright orange ring shape near the center bottom which is the remnant of a supernova.

This scaled image shows the irregular galaxy NGC 6822.
This scaled image shows the irregular galaxy NGC 6822, which was observed by the Near-InfraRed Camera (NIRCam) mounted on the NASA/ESA/CSA James Webb Space Telescope. ESA/Webb, NASA & CSA, M. Meixner

This is the NIRCam image, which picks out the thousands of stars visible to Webb which are hard to see in the MIRI image. In this wavelength, NIRCam can peer through the dust and see the stars which would otherwise be hidden, with the brightest stars glowing in blue and fainter stars in red.

Please enable Javascript to view this content

If you’d like to see a slider comparison of the MIRI and NIRCam images, that is also available on the Webb website.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more