Skip to main content

You can help analyze Juno images of Jupiter’s clouds

Some of the most stunning images of Jupiter have been captured by the Juno probe, which has been in orbit around the planet since 2016. And many of these images have investigated Jupiter’s strange atmosphere, including peering through the atmosphere’s many layers. Now, a citizen scientist project is inviting members of the public to help with this work, by identifying atmospheric features in Juno data.

The project from researchers at the University of Minnesota and NASA is called Jovian Vortex Hunter and aims to categorize the different types of clouds seen at Jupiter, in terms of their shapes and sizes. It takes data from Juno’s JunoCam imager and asks volunteers to look for specific features called atmospheric vortices. These clouds have a particular round or elliptical shape, similar to how a hurricane appears when seen from above.

An image of the 22nd orbit of the Juno spacecraft around Jupiter shows the region close to the north pole of the planet.
An image of the 22nd orbit of the Juno spacecraft around Jupiter shows the region close to the north pole of the planet. There is a huge diversity in the colors and shapes of these vortices (hurricane-like storms). Scientists need to create a catalog of these storms in order to understand how they form. NASA/JPL-Caltech/MSSS/SwRI/Ramanakumar Sankar

By asking for help from the public, the researchers can work through the data much quicker than they could on their own. “There are so many images that it would take several years for our small team to examine all of them,” said Ramanakumar Sankar, leader of the project, in a statement. “We need help from the public to identify which images have vortices, where they are and how they appear. With the catalog of features (particularly vortices) in place, we can study the physics behind how these features form, and how they are related to the structure of the atmosphere, particularly below the clouds, where we cannot directly observe them.”

Recommended Videos

The project uses the Zooniverse platform to present images, which volunteers then scan for vortices. Once this has been done many times, the data can be used both for scientific analysis and for training an algorithm to work on feature identification as well.

Please enable Javascript to view this content

And if you’re wondering what happens if someone has difficulty identifying a feature, or different volunteers disagree about whether a feature is there in an image or not — that’s actually useful data for the researchers to have. “If one person is having trouble categorizing an image, maybe others will, too,” Sankar explained. “That might indicate that we have found something new or unique that we more closely examine.”

To participate in the project, you can head to the Jovian Vortex Hunter website.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more
See the dramatic, volcanic moon Io in new Juno images
This image revealing the north polar region of the Jovian moon Io was taken on October 15 by NASA’s Juno. Three of the mountain peaks visible in the upper part of image, near the day-night dividing line, were observed here for the first time by the spacecraft’s JunoCam.

NASA's Juno spacecraft recently made a close flyby of the solar system's most volcanic body, the Jovian moon of Io. During the flyby, the spacecraft came within 1,000 miles of Io, which is the closest any craft has come to the moon within the last 20 years.

During its flyby, the spacecraft snapped images using its JunoCam instrument, and some of those images are now publicly available.

Read more
NASA’s Juno spacecraft to pass within 1,000 miles of volcanic moon Io
This image revealing the north polar region of the Jovian moon Io was taken on October 15 by NASA’s Juno. Three of the mountain peaks visible in the upper part of image, near the day-night dividing line, were observed here for the first time by the spacecraft’s JunoCam.

NASA's Juno spacecraft, currently in orbit around Jupiter, will soon be making a close flyby of one of the planet's most dramatic moons, Io. On Saturday, December 30, Juno will come within 1,000 miles of Io, making it the closest spacecraft to that moon in the last 20 years.

Io is an intriguing place because it shows signs of significant volcanic activity, making it the most geologically active body in the solar system. It hosts over 400 active volcanoes, which periodically erupt due to hot magma inside the moon created by friction caused by the gravitational pull between Jupiter and its other large moons.

Read more