Skip to main content

Aurorae light up the skies over Jupiter’s four largest moons

One of the Earth’s great natural wonders is the Northern Lights or aurora borealis; delicate waves of colors that appear in the sky over polar regions when energetic particles from the sun interact with Earth’s magnetic field. But Earth isn’t the only planet to experience aurorae, as the strong magnetic fields of planets like Jupiter and Saturn mean that aurorae are observed there as well.

Aurorae aren’t just limited to Jupiter though but are also present on four of its moons: Io, Europa, Ganymede, and Callisto. Astronomers recently used the High-Resolution Echelle Spectrometer (HIRES) instrument at the W. M. Keck Observatory in Hawai’i to observe the moons while they were in the shadow of Jupiter, allowing them to see the faint aurorae.

Artist’s rendition of oxygen, sodium, and potassium aurorae as Io enters Jupiter’s shadow.
Artist’s rendition of oxygen, sodium, and potassium aurorae as Io enters Jupiter’s shadow. Chris Faust

“These observations are tricky because in Jupiter’s shadow, the moons are nearly invisible,” said one of the lead researchers, Katherine de Kleer of Caltech, in a statement. “The light emitted by their faint aurorae is the only confirmation that we’ve even pointed the telescope at the right place.”

Recommended Videos

Different colors of aurorae are created by different elements, and the researchers were able to see some green aurorae created by oxygen similar to those we see on Earth. But at low concentrations, oxygen produces a red aurora, and as these moons have extremely thin atmospheres they show aurorae that are 15 times more red than green.

And on Io, which has plumes of sodium chloride and potassium chloride coming from its volcanoes, its aurorae can have a yellow-orange color.

“The brightness of the different colors of aurora tell us what these moons’ atmospheres are likely made up of,” said de Kleer. “We find that molecular oxygen, just like what we breathe here on Earth, is likely the main constituent of the icy moon atmospheres.”

As aurorae occur when particles from the sun interact with a magnetosphere, you might expect that a moon would need a magnetic field of its own to experience these phenomena. But three of the moons in question — other than Ganymede — don’t have their own magnetic fields. However, the magnetic field of Jupiter is so strong that its effects reach out to its moons.

The magnetic field of Jupiter is also titled, so the field on the moons varies as the planet rotates, and that means their aurorae change in brightness over time.

Another change that can happen to the aurorae is when the atmospheres warm or cool as they exit or enter the shadow of Jupiter, an effect which was seen on Io.

“Io’s sodium becomes very faint within 15 minutes of entering Jupiter’s shadow, but it takes several hours to recover after it emerges into sunlight,” said another of the lead researchers, Carl Schmidt of Boston University. “These new characteristics are really insightful for understanding Io’s atmospheric chemistry. It’s neat that eclipses by Jupiter offer a natural experiment to learn how sunlight affects its atmosphere.”

The research is published in two papers in The Planetary Science Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Juice spacecraft gears up for first ever Earth-moon gravity boost
Artist's impression of ESA's Jupiter Icy Moons Explorer (JUICE) approaching Earth.

The European Space Agency (ESA)'s Juice mission is heading to Jupiter, but it isn't traveling all that way in a straight line. Instead, like most solar system missions, the spacecraft makes use of the gravity of other planets to give it a push on its way.

But Juice will be making an unusual maneuver next year, carrying out the first gravity assist flyby around both Earth and the moon. This week, the spacecraft made its longest maneuver yet to get into position ahead of the first of its kind flyby in 2024.

Read more
Hubble captures a stunning ultraviolet image of Jupiter
NASA's Hubble Space Telescope reveals an ultraviolet view of Jupiter.

You can now see Jupiter in a whole new way, thanks to a new image from the Hubble Space Telescope. Showing the planet in the ultraviolet wavelength, the image highlights the planet's Great Red Spot -- an enormous storm larger than the width of the entire Earth that has been raging for hundreds of years.

The image was released in celebration of Jupiter reaching opposition, meaning it is directly opposite the sun as viewed from the Earth. That means that if you are a keen stargazer, now is a great time to go and look for Jupiter in the night sky as it will look its biggest and brightest.

Read more
Researchers discover a 320-mph jet stream around Jupiter’s equator
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet -- including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Read more