Skip to main content

Researchers discover a 320-mph jet stream around Jupiter’s equator

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet — including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover.In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Jupiter’s atmosphere is a dramatic, turbulent place, with epic storms like the famous Great Red Spot, which is a storm stretching over 200 miles wide. But the researchers also identified a new feature there — a high-speed jet stream that is an incredible 3,000 miles wide and located over the planet’s equator. This jet stream is high up in the atmosphere, above the main cloud layer, and was visible in the data taken with Webb’s NIRCam instrument.

Recommended Videos

“This is something that totally surprised us,” said lead researcher Ricardo Hueso of Spain’s University of the Basque Country in a statement. “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.”

Webb’s near-infrared instruments are ideal for looking at the upper layers of Jupiter’s atmosphere, and are accurate enough to resolve the blurry haze into clearer details. By tracking the movement of small clouds, the researchers could calculate the speed of the jet stream. That showed the jet stream moves at a speed of 320 mph, or around twice the wind speed of a Category 5 hurricane.

Researchers want to observe the jet stream over the next few years to see if its speed is related to the pattern of winds and temperatures seen in the planet’s stratosphere above the equator.

“It’s amazing to me that, after years of tracking Jupiter’s clouds and winds from numerous observatories, we still have more to learn about Jupiter, and features like this jet can remain hidden from view until these new NIRCam images were taken in 2022,” said team member Leigh Fletcher of England’s University of Leicester.

The research is published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more