Skip to main content

James Webb spots ancient dust that could be from the earliest supernovas

Dust might not sound like the most interesting of topics, but to a certain set of astronomers, it’s thrilling. Researchers recently used the James Webb Space Telescope to identify grains of dust from the early universe, which could have been produced by the earliest supernovas.

James Webb is a powerful tool because it allows researchers to identify extremely distant, and therefore extremely old, galaxies. Webb can be used to not only identify these early galaxies but also to take spectra from them, which can reveal their chemical composition by seeing which wavelengths of light they absorb. As part of a survey called JWST Advanced Deep Extragalactic Survey or JADES, Webb’s NIRCam instrument took this image of a region of the sky called GOODS-South. Within that image, researchers used Webb’s NIRSpec instrument to look at the spectra of early galaxies like JADES-GS-z6.

This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES.
This image highlights the location of the galaxy JADES-GS-z6 in a portion of an area of the sky known as GOODS-South, which was observed as part of the JWST Advanced Deep Extragalactic Survey, or JADES. ESA/Webb, NASA, ESA, CSA, B. Robertson (UC Santa Cruz), B. Johnson (Center for Astrophysics, Harvard & Smithsonian), S. Tacchella (University of Cambridge, M. Rieke (Univ. of Arizona), D. Eisenstein (Center for Astrophysics, Harvard & Smithsonian), A. Pagan (STScI)

Using the spectrograph, the researchers found evidence of carbon-rich grains in dust clouds. That appears to be similar to findings of compounds called polycyclic aromatic hydrocarbons (PAHs), however, it wouldn’t have been possible for these complex compounds to have formed so early in the universe.

Recommended Videos

This is complicated because spectra can look similar for different chemicals. In this case, it could be that the tiny variance found by the researchers is significant: their feature was most prominent at 226.3 nanometers, while PAHs are typically most prominent at  217.5 nanometers. That’s a very small discrepancy, but it could be due to a mixture of particles present in the dust.

“This slight shift in wavelength of where the absorption is strongest suggests we may be seeing a different mix of grains, for example, graphite- or diamond-like grains,” said lead author of the research, Joris Witstok of the University of Cambridge, in a statement. Witstok went on to explain that this mixture could have come about due to early supernovas or large stars called Wolf-Rayet stars: “This could also potentially be produced on short timescales by Wolf-Rayet stars or supernova ejecta.”

Since work with Webb began last year, astronomers have noted that early galaxies seem to be considerably more numerous and more massive than anyone had predicted, which, along with evidence such as this discovery, is leading them to rethink their assumptions about the early universe.

“This discovery implies that infant galaxies in the early Universe develop much faster than we ever anticipated,” said researcher Renske Smit of Liverpool John Moores University. “Webb shows us a complexity of the earliest birthplaces of stars (and planets) that models are yet to explain.“

The research is published in the journal Nature.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb takes rare direct image of a nearby super-Jupiter
Artist’s impression of a cold gas giant orbiting a red dwarf. Only a point of light is visible on the JWST/MIRI images. Nevertheless, the initial analysis suggests the presence of a gaseous planet that may have properties similar to Jupiter.

Even with huge ground-based observatories and the latest technology in space-based telescopes, it's still relatively rare for astronomers to take an image of an exoplanet. Planets outside our solar system are so far away and so small and dim compared to the stars they orbit that it's extremely difficult to study them directly. That's why most observations of exoplanets are made by studying their host stars. Now, though, the James Webb Space Telescope has directly imaged a gas giant -- and it's one of the coldest exoplanets observed so far.

The planet, named Epsilon Indi Ab, is located 12 light-years away and has an estimated temperature of just 35 degrees Fahrenheit (2 degrees Celsius). The fact it is so cool compared to most exoplanets meant that Webb's sensitive instruments were needed to study it.

Read more
One half of this wild exoplanet reaches temperatures of 1,450 degrees Fahrenheit
webb wasp 39b dayside nightside stsci 01j2f12rm1s3n39yj938nhsf93 png

This artist’s concept shows what the exoplanet WASP-39 b could look like based on indirect transit observations from JWST and other space- and ground-based telescopes. Data collected by its NIRSpec (Near-Infrared Spectrograph) show variations between the morning and evening atmosphere of the planet. NASA, ESA, CSA, Ralf Crawford (STScI)

One of the ground-breaking abilities of the James Webb Space Telescope is that researchers can use it to not only detect distant planets but also to peer into their atmosphere. Now, new research using Webb has uncovered differing conditions between morning and evening on a distant exoplanet, the first time such differences have been observed on a planet outside our solar system.

Read more
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more