Skip to main content

Astronomers just spotted the largest cosmic explosion ever seen

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Artist’s impression of a black hole accretion.
Artist’s impression of a black hole accretion. John A. Paice

“We came upon this by chance, as it was flagged by our search algorithm when we were searching for a type of supernova,” said lead researcher Philip Wiseman of the University of Southampton in a statement. “Most supernovae and tidal disruption events only last for a couple of months before fading away. For something to be bright for two plus years was immediately very unusual.”

Recommended Videos

The researchers used several ground-based telescopes to observe the event, which had first been spotted in 2020. Because of how far away the explosion is, the event must have occurred around 8 billion years ago.

While bright events involving the supermassive black holes at the heart of galaxies typically show brightness rising and falling, that wasn’t the case here. “Looking back over a decade there was no detection of AT2021lwx, then it suddenly appeared as one of the most luminous things in the universe, which is unprecedented,” said co-author Mark Sullivan.

The researchers can’t say for certain what caused the explosion, but one theory is that it occurred when an enormous cloud of hydrogen gas strayed too close to a supermassive black hole, and parts of it were devoured as they passed the event horizon. That caused shock waves throughout the rest of the cloud and other material circling the black hole.

To understand more about the event, the researchers plan to observe it in different wavelengths such as X-rays. Upcoming telescopes like the Vera Rubin Observatory will also be able to look for other similar events, as it will perform regular surveys of half of the night sky to identify changes and spot transient events.

“With new facilities, like the Vera Rubin Observatory’s Legacy Survey of Space and Time, coming online in the next few years, we are hoping to discover more events like this and learn more about them,” Wiseman said. “It could be that these events, although extremely rare, are so energetic that they are key parts of how the centers of galaxies change over time.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more
Astronomers spot rare star system with six planets in geometric formation
Orbital geometry of HD110067: Tracing a link between two neighbour planets at regular time intervals along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system together create a mesmerising geometric pattern due to their resonance-chain.

Astronomers have discovered a rare star system in which six planets orbit around one star in an elaborate geometrical pattern due to a phenomenon called orbital resonance. Using both NASA's Transiting Exoplanet Survey Satellite (TESS) and the European Space Agency's (ESA) CHaracterising ExOPlanet Satellite (CHEOPS), the researchers have built up a picture of the beautiful, but complex HD110067 system, located 100 light-years away.

The six planets of the system orbit in a pattern whereby one planet completes three orbits while another does two, and one completes six orbits while another does one, and another does four orbits while another does three, and so one. The six planets form what is called a "resonant chain" where each is in resonance with the planets next to it.

Read more
Hubble spots an Earth-sized exoplanet just 22 light-years away
An artist’s concept of the nearby exoplanet, LTT 1445Ac, which is the size of Earth. The planet orbits a red dwarf star.

Although astronomers have now discovered more than 5,000 exoplanets, or planets outside of the solar system, the large majority of these planets are considerably larger than Earth. That's partly because it's easier to spot larger planets from tremendous distances across space. So it's exciting when an Earth-sized planet is discovered -- and the Hubble Space Telescope has recently confirmed that a nearby planet, which is diminutive by exoplanet standards, is 1.07 times the size of Earth.

The planet LTT 1445Ac was first discovered by NASA's Transiting Exoplanet Survey Satellite (TESS) in 2022, but it was hard to determine its exact size due to the plane of its orbit around its star as seen from Earth. “There was a chance that this system has an unlucky geometry and if that’s the case, we wouldn’t measure the right size. But with Hubble’s capabilities we nailed its diameter,” said lead researcher Emily Pass of the Harvard-Smithsonian Center for Astrophysics in a statement.

Read more