Skip to main content

The first black hole ever photographed is ‘wobbling,’ scientists say

Scientists have found the first black hole ever to get its picture taken, known as M87, is rotating and changing over time. 

According to a new study published in The Astrophysical Journal, the black hole’s ring of material around it and its crescent-like shadow feature haven’t changed in size over the period of observation, but its brightness, and where it is bright, have drastically changed. The shadow appears to be “wobbling” over time.  

Recommended Videos

“Because the flow of matter is turbulent, the crescent appears to wobble with time,” said Maciek Wielgus of the Harvard and Smithsonian Center for Astrophysics and lead author of the paper. “Actually, we see quite a lot of variation there, and not all theoretical models of accretion allow for so much wobbling. What it means is that we can start ruling out some of the models based on the observed source dynamics.”

M. Wielgus & the EHT Collaboration

The study looked at preliminary data of the M87 black hole from 2009 to 2013 and the 2017 images using the Event Horizon Telescope. Scientists found that the ring on the black hole’s right side was brightest in 2013, while the bottom of the ring was the brightest in 2017. 

Please enable Javascript to view this content

M87’s enormous size (6.5 billion times the mass of our sun) gives scientists an advantage to view these smaller changes over time. The findings released in Wednesday’s study will better help scientists understand phenomena such as relativistic jets and general relativity theory.

The M87 black hole is located in the Messier 87 galaxy, 55 million light-years away, and was captured in an image last year.

After that historical photo, scientists also discovered that baby black holes “chirp” as they are born, just as Albert Einstein predicted. The pitch of the waves could signal the black hole’s potential mass and spin and the loudest part of this “chirp” indicates the exact moment when the two black holes collided, creating an entirely new black hole. 

Allison Matyus
Former Digital Trends Contributor
Allison Matyus is a general news reporter at Digital Trends. She covers any and all tech news, including issues around social…
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Nightmare black hole is the brightest object in the universe
Artist’s impression showing the record-breaking quasar J059-4351.

A  recently discovered monster black hole feasts on so much nearby material that it's the fastest-growing of its kind on record. The beefy black hole is devouring the equivalent mass of our sun every single day, making it a record-breaker in more ways than one.

“The incredible rate of growth also means a huge release of light and heat,” said lead researcher Christian Wolf of The Australian National University in a statement. “So, this is also the most luminous known object in the universe. It’s 500 trillion times brighter than our sun.”

Read more
Scientists want your help to search for black holes
An illustration of a black hole.

Even though black holes swallow anything that comes near them -- even light -- they are still possible to locate by looking for signs of their effects. Black holes are extremely dense, so they have a lot of mass and a strong gravitational effect that can be observed from light-years away. But the universe is a big place, and researchers are hoping that the public can help them to identify more black holes in the name of scientific exploration.

A project called Black Hole Hunter invites members of the public to search through data collected by NASA's Transiting Exoplanet Survey Satellite (TESS) to look for signs of a black hole. Using a technique called gravitational microlensing, citizen scientists will look at how the brightness of light from various stars changes over time, looking for indications that a black hole could have passed in front of a star and bent the light coming from it. This should enable the project to identify black holes that would otherwise be invisible.

Read more