Skip to main content

Mars Express orbiter snaps an image of Mars’s ‘Grand Canyon’

The sights of Mars are many and marvelous — and the European Space Agency (ESA)’s Mars Express orbiter recently captured one of the planet’s wonders, the Valles Marineris canyon system.

This enormous canyon system is nearly 2,500 miles long and over 120 miles wide, and is more than 4 miles deep in places. That makes it 20 times wider and five times deeper than Arizona’s Grand Canyon, according to ESA. This gigantic size makes it the largest known canyon system in the solar system, and studying it can help researchers learn about the geological processes which formed and continue to shape Mars.

This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022.
This image from ESA’s Mars Express shows Ius and Tithonium Chasmata, which form part of Mars’ Valles Marineris canyon structure. This image comprises data gathered by Mars Express’ High Resolution Stereo Camera (HRSC) on 21 April 2022. ESA/DLR/FU Berlin

The image, taken by the High Resolution Stereo Camera (HRSC) on the Mars Express orbiter, shows two steep depressions called chasma: the Ius Chasma on the left and the Tithonium Chasma on the right. This is a true color image, meaning it shows the colors as your eye would see them, and you can see a large patch of dark dunes at the top of the image which look distinctly different from the lighter sandy-colored dunes seen elsewhere in the image. The dark sand which forms these darker dunes may have come from a nearby volcanic region called the Tharsis province.

This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and colour channels of the High Resolution Stereo Camera on ESA’s Mars Express.
This oblique perspective view of Tithonium Chasmata, which forms part of Mars’ Valles Marineris canyon structure, was generated from the digital terrain model and the nadir and color channels of the High Resolution Stereo Camera on ESA’s Mars Express. ESA/DLR/FU Berlin

Another view of the Tithonium Chasmata was created from a digital model of the terrain made using data from the HRSC camera. This shows the dramatic structure of the canyon better, with large mountain-like structures which rise nearly two miles high. The patterns seen draping down from the peaks are caused by erosion, as strong winds push material down the slopes.

Recommended Videos

These enormous groves in the martian landscape are thought to have been created when tectonic plates pulled apart. Mars is not tectonically active today, and for a long time scientists thought that plate tectonics existed only on Earth. But research in the last decade has suggested that Mars was once tectonically active as well, and canyon structures like this are remnants from that time.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Juice spacecraft snaps images of the Earth and moon as it passes by
This image of our own Moon was taken during Juice’s lunar-Earth flyby on 19 August 2024. The main aim of JANUS’s observations during the lunar-Earth flyby was to evaluate how well the instrument is performing, not to make scientific measurements.

The European Space Agency's Juice spacecraft recently made a flyby of both Earth and the moon on its way to Jupiter. The purpose of the flyby was mainly to adjust the spacecraft's speed and direction, to help send it on its long journey to investigate Jupiter and its icy moons. But as the spacecraft flew within a few thousand miles of the Earth's surface, it was able to use its instruments to snap pictures of both the Earth and the moon.

The Juice spacecraft's main camera is called Janus, which will take high-resolution images of Jupiter's moons to identify surface features, as well as observing the clouds of Jupiter. The flyby gave the opportunity to test this instrument on both the moon, which has no atmosphere and is so comparable to the moons of Jupiter, and the Earthm which has a cloud layer that can serve as a stand-in for the thick atmosphere of Jupiter.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more
Perseverance rover finds tantalizing hints of possible ancient life on Mars
mars 2020 perseverance rover

NASA's Perseverance rover was sent to Mars with one big, ambitious aim: to see if life could ever have thrived on our neighboring planet. Although there's unlikely to be anything alive on Mars now, the planet was once similar to Earth, with a thicker atmosphere and plentiful water on its surface. And during this time, billions of years ago, microbial life could have survived there. Now, Perseverance has located some tantalizing indications of possible microbial life -- although it's too early for scientists to be sure.

The rover has been taking samples by drilling into the martian rock as it travels, and it's a recent sample from an area called the Cheyava Falls that has ignited interest. The rock, collected on July 21, has indications of chemical signatures and physical structures that could potentially have been formed by life, such as the presence of organic compounds. These carbon-based molecules are the building blocks of life; however, they can also be formed by other processes.

Read more