Skip to main content

NASA talks to spacecraft using both radio and laser communications on one dish

When NASA’s Psyche mission launched in October of last year, it had a special passenger on board: a test of a new communications system using lasers, named Deep Space Optical Communications (DSOC). That system sent back its first data in November, and now it has hit another milestone, with signals from the experiment being received by a hybrid antenna on Earth.

The vast majority of deep space missions communicate using radio frequencies, which is a tried and tested technology that has been in use for decades. However, there are bandwidth limitations to radio communications, and as missions collect ever larger amounts of data, a new communications technology is required to send them. That’s where laser or optical communications come in, as this can improve the available bandwidth by 10 or even 100 times over radio.

Now that Goldstone’s experimental hybrid antenna has proved that both radio and laser signals can be received synchronously by the same antenna, purpose-built hybrid antennas (like the one depicted here in an artist’s concept) could one day become a reality.
Now that Goldstone’s experimental hybrid antenna has proved that both radio and laser signals can be received synchronously by the same antenna, purpose-built hybrid antennas (like the one depicted here in an artist’s concept) could one day become a reality. NASA/JPL-Caltech

DSOC is testing whether sending signals from deep space crafts using laser communications is feasible. But the other half of the equation is receiving those signals on Earth. NASA’s Deep Space Network (DSN), which receives signals from these deep space missions, is now experimenting with a hybrid design antenna that can receive both radio and laser signals.

Recommended Videos

This experimental hybrid antenna has been able to receive both laser signals from DSOC and radio signals from Psyche for the first time. “Our hybrid antenna has been able to successfully and reliably lock onto and track the DSOC downlink since shortly after the tech demo launched,” said Amy Smith, DSN deputy manager at NASA’s Jet Propulsion Laboratory, in a statement. “It also received Psyche’s radio frequency signal, so we have demonstrated synchronous radio and optical frequency deep space communications for the first time.”

Please enable Javascript to view this content

The hybrid antenna was built by retrofitting existing radio antenna hardware and adding a group of segmented mirrors to the very center of the dish. This allows the laser signals to be redirected to a camera placed on the long arms that extend from the dish’s structure.

“We use a system of mirrors, precise sensors, and cameras to actively align and direct laser from deep space into a fiber reaching the detector,” explained Barzia Tehrani, communications ground systems deputy manager and delivery manager for the hybrid antenna at JPL.

The aim is to upgrade more dishes in the DSN network to use both laser and radio communications, or even to construct new purpose-built hybrid antennae in the future. “We can have one asset doing two things at the same time; converting our communication roads into highways and saving time, money, and resources,” said Tehrani.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA sets new target launch date for Starliner spacecraft
The Starliner atop an Atlas V rocket.

The Starliner spacecraft sits atop an Atlas V rocket at the Kennedy Space Center in Florida. NASA/Joel Kowsky

After calling off the launch of Boeing Space’s Starliner spacecraft on Saturday with just minutes to go, NASA says it's now aiming to send the vehicle on its first crewed mission at 10:52 a.m. ET on Wednesday, June 5.

Read more
NASA’s Orion spacecraft has ‘critical issues’ with its heat shield, report finds
The Orion crew module for NASA’s Artemis II mission.

The Orion crew module for NASA’s Artemis II mission. NASA/Kim Shiflett

NASA is intending to use its new Orion capsule to send astronauts to the moon under its Artemis program, but a new report finds that issues with the capsule's heat shield could be a risk to crew safety. The report from NASA's inspector general was released this week and details issues with the heat shield, which lost some material during the first flight of Orion during the Artemis I mission in 2022.

Read more
Psyche spacecraft sends data back to Earth using lasers for the first time
NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft.

NASA's experimental laser communication system, riding along with the Psyche spacecraft, has hit another milestone. The system was recently used to transmit Psyche data from over 140 million miles (226 million kilometers) away.

The system, called Deep Space Optical Communications, or DSOC, has previously been used to send test data and even to send a video of a cat, to test whether using laser communications in addition to the usual radio communications is possible. But as this is technology is experimental, the Psyche spacecraft has its own radio communications system it has been using to transmit its science data. Now, though, DSOC has been able to interface with the Psyche systems and send Psyche engineering data back to Earth as well.

Read more