Skip to main content

James Webb Space Telescope powers on its instruments in Ground Segment Test

NASA’s upcoming James Webb Space Telescope has run into its share of problems during its development process, but now it has reached a milestone with the completion of the “Ground Segment Test.”

This test involved sending commands to power on the scientific instruments aboard the James Webb for the first time, ensuring that ground control personnel at NASA will be able to control the telescope once it is in orbit.

Recommended Videos

“This was the first time we have done this with both the actual Webb flight hardware and ground system,” Amanda Arvai, deputy division head of mission operations at the Space Telescope Science Institute (STScI) in Maryland said in a statement.

“We’ve performed pieces of this test as the observatory was being assembled, but this is the first ever, and fully successful, end-to-end operation of the observatory and ground segment. This is a big milestone for the project, and very rewarding to see Webb working as expected.”

Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff.
Now that the observatory has been completely assembled, Webb teams are running full observatory level tests to ensure it is prepared for the rigors of liftoff. NASA/Chris Gunn

The test required over 100 people, most working remotely, and took four days. It consisted of turning on, moving, and operating the telescope’s four instruments: The Near-Infrared Camera, the Near-Infrared Spectrograph, the Mid-Infrared Instrument, and the Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph.

“This was also the first time we’ve demonstrated the complete cycle for conducting observations with the observatory’s science instruments,” Arvai said.

“This cycle starts with the creation of an observation plan by the ground system which is uplinked to the observatory by the Flight Operations Team. Webb’s science instruments then performed the observations and the data was transmitted back to the Mission Operations Center in Baltimore, where the science was processed and distributed to scientists.”

The engineers wanted to simulate the communications conditions of the telescope being in space and being controlled from the ground, so they sent the commands via NASA’s Deep Space Network. Once the telescope is in orbit, commands will be relayed using the network which has locations in California, Spain, and Australia to ensure that communication with space-based instruments can continue as the Earth rotates.

Testing of the James Webb will continue with acoustic and sine-vibration testing which simulate the challenging conditions of a launch, and the launch itself is scheduled for October 31, 2021.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
Gorgeous Webb image of Serpens Nebula shows a strange alignment
This image shows the centre of the Serpens Nebula as seen by the NASA/ESA/CSA James Webb Space Telescope’s Near-InfraRed Camera (NIRCam).

The Serpens Nebula, located 1,300 light-years from Earth, is home to a particularly dense cluster of newly forming stars (about 100,000 years old), some of which will eventually grow to the mass of our Sun. Webb’s image of this nebula revealed a grouping of aligned protostellar outflows (seen in the top left). These jets are identified by bright clumpy streaks that appear red, which are shock waves caused when the jet hits the surrounding gas and dust. NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

This stunning new image from the James Webb Space Telescope shows the famous Serpens Nebula, a dense star-forming region where new stars are being born amid clouds of dust and gas. Unlike some other nebulae, which are illuminated by radiation from stars that causes them to glow, this is a type called a reflection nebula, so it only shines due to the light that reflects from other sources.

Read more