Skip to main content

Here’s how NASA’s Perseverance rover will collect samples from martian surface

NASA’s Perseverance Mars Rover Sample Caching System

In just a few months, NASA will launch its newest rover, Perseverance, on its journey to Mars. The rover will search for evidence of ancient life on the planet, including the collection of martian rock and soil samples. And if you’ve ever wondered how a robot would go about collecting a sample from another planet, NASA has shared more information about how the process works.

Recommended Videos

Comparing the Perseverance mission to Mars to the Apollo mission to the moon, Adam Steltzner, chief engineer for the Mars 2020 Perseverance rover mission at NASA’s Jet Propulsion Laboratory, pointed out the importance of humans in traditional sample collection: “While you cannot help but marvel at what was achieved back in the days of Apollo, they did have one thing going for them we don’t: Boots on the ground,” he said in a statement. “For us to collect the first samples of Mars for return to Earth, in place of two astronauts we have three robots that have to work with the precision of a Swiss watch.”

To achieve this, the rover will use its Sample Caching System. The system includes a rotating array of drill bits to allow the rover to dig into different sorts of rock and soil, plus abrasion bits to remove the top layer of a rock and also the rover’s spectrometry instruments to analyze samples.

“Essentially, after our rotary percussive drill takes a core sample, it will turn around and dock with one of the four docking cones of the bit carousel,” Steltzner explained. “Then the bit carousel rotates that Mars-filled drill bit and a sample tube down inside the rover to a location where our sample handling arm can grab it. That arm pulls the filled sample tube out of the drill bit and takes it to be imaged by a camera inside the Sample Caching System.”

Engineers and technicians working on the Mars 2020 Perseverance team
Engineers and technicians working on the Mars 2020 Perseverance team insert 39 sample tubes into the belly of the rover. Each tube is sheathed in a gold-colored cylindrical enclosure to protect it from contamination. Perseverance rover will carry 43 sample tubes to Mars’ Jezero Crater. The image was taken at NASA’s Kennedy Space Center in Florida on May 20, 2020. NASA/JPL-Caltech

In total, the Sample Caching System has an incredible 3,000 parts, all of which must work in unison to drill, handle, and store samples of the martian rock and soil.

“It sounds like a lot, but you begin to realize the need for complexity when you consider the Sample Caching System is tasked with autonomously drilling into Mars rock, pulling out intact core samples and then sealing them hermetically in hyper-sterile vessels that are essentially free of any Earth-originating organic material that could get in the way of future analysis,” Steltzner said. “In terms of technology, it is the most complicated, most sophisticated mechanism that we have ever built, tested, and readied for spaceflight.”

Once a sample has been collected and imaged, it is sealed up in its tube and returned to storage inside the rover. This process is complex enough, but actually getting the samples back to Earth is a whole new challenge. The current plan involves sending two spacecraft to Mars — one to land on the planet and rendezvous with the rover to collect the samples, then ascend into orbit. The second craft would rendezvous with this first craft and carry the samples back to Earth.

NASA hopes to land the first sample return craft in 2028, and return the samples to Earth by 2031.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
NASA’s wild plan to launch a rocket from Mars is ‘like something from an amusement park’
An illustration shows a rocket tossed in the air from the surface of Mars and igniting.

When it comes to missions to Mars, NASA has been on a winning streak in recent decades. Its Spirit, Opportunity, Phoenix, Curiosity, InSight, and Perseverance missions have all landed successfully on the Martian surface, and we're learning more than ever before about how to land on and explore the planet safely. The agency’s next plans for Mars, however, are a whole new level of ambitious. The Perseverance rover has been collecting samples of Mars dust and rock as it travels around, and the aim of the Mars Sample Return mission is to get those samples back to Earth.

The exact design of the mission has changed since it was first announced, but the current plan involves sending a lander to the surface called the Sample Return Lander (SRL) and then getting Perseverance to drop off the samples at this lander. Those samples will be loaded into a rocket inside the lander called the Mars Ascent Vehicle, which will launch into Mars orbit, where it will rendezvous with a spacecraft called the Earth Return Orbiter, which will bring those samples back to Earth.

Read more
How to watch NASA reveal the Bennu asteroid sample
Two NASA personnel carry a container holding the sample gathered from the Bennu asteroid.

NASA Live: Official Stream of NASA TV

NASA is set to reveal the sample collected from the Bennu asteroid during the OSIRIS-REx mission.

Read more
How one NASA lander decoded secrets lying beneath the surface of Mars
Dust blankets the solar panels of the Mars Insight lander, shortly before its demise.

Dust blankets the solar panels of the Mars Insight lander, shortly before its demise. NASA

The life of the Mars InSight lander came to an end last year as its solar panels were covered with dust and its power supply slowly dwindled away. After four years of research and data collection, NASA officially declared the end of the mission in December 2022.

Read more