Skip to main content

James Webb researcher on how telescope will investigate exoplanet atmospheres

When the James Webb Space Telescope begins science operations this summer, it will be used to investigate a wide variety of astronomical objects, from supermassive black holes to distant galaxies. One of Webb’s big scientific goals is to learn more about exoplanets, or planets outside our solar system, and in particular to look at exoplanet atmospheres. It is extremely difficult to tell whether an exoplanet has an atmosphere or what that atmosphere might be composed of using current telescopes, but Webb’s sensitive instruments will be able to detect these atmospheres and learn more about distant planets — potentially even finding habitable worlds.

One of the researchers who will be using Webb to analyze exoplanet atmospheres, Knicole Colón, Webb’s deputy project scientist for exoplanet science, has shared more about this work in a recent NASA blog post:

Recommended Videos

“One specific exoplanet observation that will be done with Webb involves collecting observations over the course of a planet’s orbit to enable measurements of the atmospheric composition and dynamics,” Colón writes. “I am involved in a program to observe the gas giant HD 80606 b as part of Webb’s first year of observations. Because the orbit of HD 80606 b is extremely eccentric (non-circular) and long (111 days), the amount of energy received by the planet from its star ranges from approximately 1 to 950 times what Earth receives from the Sun! This results in extreme temperature variations, which are predicted to cause clouds to rapidly form and dissipate in the planet’s atmosphere on very short timescales.”

Please enable Javascript to view this content

To learn more about these dramatic atmospheric variations, Colón’s team will use Webb’s Near InfraRed Spectrograph or NIRSpec instrument to analyze light coming from the planet to learn about its composition: “Our science team will probe these predicted cloud dynamics in real-time over the course of a continuous ~18 hour observation of HD 80606 b as it passes behind its star, using the NIRSpec instrument on Webb to measure thermal light from the planet’s atmosphere.”

As well as gas giants like HD 80606 b, in its first cycle of research Webb will also look at the atmospheres of Earth-like or terrestrial planets, examine hot rocky exoplanets covered in volcanoes, investigate the disks of matter from which planets form, and look at extreme worlds close to their host stars called hot Jupiters.

This builds on work done by current exoplanet-hunting telescopes like the Transiting Exoplanet Survey Satellite, or TESS, Colón writes: “With TESS and other surveys continuing to discover additional planets in our galaxy at a regular pace and Webb preparing to study the atmospheres of many of these newly discovered worlds, our exoplanet adventures are in many ways just beginning.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more
There’s a tiny exoplanet orbiting our neighbor, known as Barnard’s star
Artist’s impression of a sub-Earth-mass planet orbiting Barnard’s star

In our local cosmic neighborhood, the nearest star is Proxima Centauri, which is part of the three-star Alpha Centauri system and known to host exoplanets of its own. But just a little further away is a single star on its own, known as Barnard's star. Recently, astronomers discovered that this star also hosts at least one exoplanet, and could host as many as four.

At just six light-years from Earth, Barnard's star is close by and has long been of interest to researchers searching for nearby exoplanets. But as a small, dim type of star called a red dwarf, no one has discovered an exoplanet here before -- though there were hints found in 2018 that such a planet might exist.

Read more
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more