Things are heating up on Mars, as the Perseverance rover begins its new science campaign. In its previous science campaign, the NASA rover explored the floor of the Jezero crater, but now it has moved on to investigate an exciting location called the delta. As the site of an ancient river delta, this region is a great location to search for evidence of ancient life and to find rocks carried from far-off locations by the river that was there millions of years ago.
Perseverance collected its first sample of this science campaign last week, on Thursday, March 30. This is the 19th sample of rock and dust that the rover has collected so far, with 10 of those samples carefully left behind in a sample cache on the Martian surface. The latest sample was collected from a rock named “Berea” which is thought to be made up of deposits that were carried by the river.
The rock sample seems to be rich in carbonate, making it an exciting target for scientists as it could potentially hold clues to whether there was ancient life nearby. “Carbonate rocks on Earth can be good at preserving fossilized lifeforms. If biosignatures were present in this part of Jezero Crater, it could be a rock like this one that could very well hold their secrets,” explained Katie Stack Morgan, deputy project scientist for Perseverance at NASA’s Jet Propulsion Laboratory, in a statement.
Carbonates are intriguing for another reason, which is that they could help to answer a long-standing mystery about Mars’ climate. Carbonates are formed when water and carbon dioxide interact with other compounds, and we know that there is plenty of carbon dioxide in the martian atmosphere and there was once plenty of water on the surface too. But we rarely see carbonate deposits on Mars today, and it’s not clear why. Understanding more about this mystery can help scientists build up a better picture of Mars’ history.
“The Berea core highlights the beauty of rover missions,” said Perseverance’s project scientist, Ken Farley of Caltech. “Perseverance’s mobility has allowed us to collect igneous samples from the relatively flat crater floor during the first campaign, and then travel to the base of the crater’s delta, where we found fine-grained sedimentary rocks deposited in a dried lakebed.
“Now we are sampling from a geologic location where we find coarse-grained sedimentary rocks deposited in a river. With this diversity of environments to observe and collect from, we are confident that these samples will allow us to better understand what occurred here at Jezero Crater billions of years ago.”