Skip to main content

Perseverance rover finds conditions where life could have thrived on Mars

The Perseverance rover has made an exciting discovery on Mars, identifying the building blocks of life in a sample from an area of the Jezero crater where there was once plentiful liquid water. The organic molecules it discovered can be formed in various ways including non-organic processes, so they aren’t proof that life once existed there — but they do show that life could potentially have thrived there millions of years ago.

NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater.
NASA’s Perseverance rover puts its robotic arm to work around a rocky outcrop called “Skinner Ridge” in Mars’ Jezero Crater. Composed of multiple images, this mosaic shows layered sedimentary rocks in the face of a cliff in the delta, as well as one of the locations where the rover abraded a circular patch to analyze a rock’s composition. NASA/JPL-Caltech/ASU/MSSS

As the Perseverance rover continues its explorations of the Jezero river delta for its second science campaign (the first science campaign was the exploring of the Jezero crater floor), it has been collecting samples as it goes. One particularly exciting sample was collected from a 3-foot wide outcrop rock named Wildcat Ridge, which the rover collected on July 20.

Recommended Videos

When the sample from Wildcat was studied using Perseverance’s SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) instrument, researchers discovered that the sample included organic molecules. These building blocks of life have previously been discovered on Mars by the Curiosity rover in the Gale Crater, but in the case of the recent finding, the molecules were found in the sedimentary rock close to sulfate minerals that form in water.

“In the distant past, the sand, mud, and salts that now make up the Wildcat Ridge sample were deposited under conditions where life could potentially have thrived,” Perseverance project scientist Ken Farley said in a statement. “The fact the organic matter was found in such a sedimentary rock – known for preserving fossils of ancient life here on Earth – is important. However, as capable as our instruments aboard Perseverance are, further conclusions regarding what is contained in the Wildcat Ridge sample will have to wait until it’s returned to Earth for in-depth study as part of the agency’s Mars Sample Return campaign.”

NASA hopes to bring the samples collected by Perseverance back to Earth through its Mars Sample Return mission in the 2030s, enabling in-depth study of the martian samples.

“I’ve studied Martian habitability and geology for much of my career and know first-hand the incredible scientific value of returning a carefully collected set of Mars rocks to Earth,” said Laurie Leshin, director of NASA’s Jet Propulsion Laboratory. “That we are weeks from deploying Perseverance’s fascinating samples and mere years from bringing them to Earth so scientists can study them in exquisite detail is truly phenomenal. We will learn so much.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Perseverance rover gears up for a big climb to the rim of the Jezero Crater
One of the navigation cameras aboard NASA’s Perseverance Mars rover captured this view looking back at the “Bright Angel” area on July 30, the 1,224th Martian day, or sol, of the mission.

The Perseverance rover on Mars is set to begin its newest challenge: a slog up the rim of the Jezero Crater that will take months to complete. The rover will face steep slopes and difficult terrain, testing its wheels and suspension system, but its efforts should help to uncover rocks from the most ancient part of the Mars crust.

Since the rover landed in the Jezero Crater in 2021, it has been exploring the floor of the crater and the site of an ancient river delta. This area was chosen because it was once home to an ancient lake, so the rock cores that the rover has collected will help to uncover information about the history of water on Mars -- which is vital to determine if the planet could ever have been habitable.

Read more
NASA’s axed moon rover could be resurrected by Intuitive Machines
An illustration of NASA's Volatiles Investigating Polar Exploration Rover (VIPER) on the lunar surface.

Lunar scientists were shocked and dismayed last month when NASA announced that it was canceling work on its moon rover, VIPER. The Volatiles Investigating Polar Exploration Rover was intended to search the moon's south pole for evidence of water there, but NASA said that it had to ax the project due to increasing costs.

This week, an open letter to Congress called the cancellation of the mission "unprecedented and indefensible," and questioned NASA's assertion that the cancellation of the mission would not affect plans to send humans to the moon. Scientists argued that the mission was fundamental to understanding the presence of water on the moon, which is a key resource for human exploration, as well as an issue of scientific interest.

Read more
Mars has ‘oceans’ worth’ of water – but it’s deep underground
More than 3 billion years ago, Mars was warm, wet, and had an atmosphere that could have supported life. This artist's rendering shows what the planet may have looked like with global oceans based on today's topography.

One of the key issues for getting humans to Mars is finding a way to get them water. Scientists know that millions of years ago, Mars was covered in oceans, but the planet lost its water over time and now has virtually no liquid water on its surface. Now, though, researchers have identified what they believe could be oceans' worth of water on Mars. There's just one snag: it's deep underground.

The research used data from NASA's now-retired InSight lander, which used a seismometer and other instruments to investigate the planet's interior. They found evidence of what appears to be a large underground reservoir of water, enough to cover the entire planet in about a mile of ocean. But it's inaccessible, being located between 7 to 13 miles beneath the planet's surface. The water is located in between cracks in a portion of the interior called the mid-crust, which sits beneath the dry upper crust that is drillable from the surface.

Read more