Skip to main content

Evidence of a possible exoplanet in another galaxy found for the first time

Of the thousands of exoplanets detected to date, all have been within the Milky Way. But now, evidence has been uncovered for the potential identification of a planet in another galaxy for the first time.

The potential exoplanet was spotted using NASA’s Chandra X-ray Observatory in the Messier 51 galaxy, also known as the Whirlpool galaxy thanks to its beautiful whirling shape.

A composite image of M51 with X-rays from Chandra and optical light from NASA's Hubble Space Telescope contains a box that marks the location of the possible planet candidate.
A composite image of M51 with X-rays from Chandra and optical light from NASA’s Hubble Space Telescope contains a box that marks the location of the possible planet candidate. X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler

At 28 million light-years away, the potential exoplanet is far, far further away than any other planet discovered so far. It is exceedingly hard to spot planets because they are so much smaller compared to the stars they orbit, and they reflect little light. So most exoplanets are detected by looking at the small impacts they have on the brightness of the stars around which they orbit.

Recommended Videos

This new potential exoplanet in Messier 51, however, was spotted by looking in the X-ray wavelength instead of the visible light wavelength. The team of researchers looked at systems called X-ray binaries, in which a normal star is being consumed by a black hole or neutron star, and is giving off X-rays. The dense black hole or neutron star which is producing the X-rays is a small area, so if a planet passes in front of the system then it could block almost all of those X-rays — which makes it possible for it to be noticed from Earth.

Please enable Javascript to view this content

“We are trying to open up a whole new arena for finding other worlds by searching for planet candidates at X-ray wavelengths, a strategy that makes it possible to discover them in other galaxies,” said lead author Rosanne Di Stefano of the Center for Astrophysics, Harvard & Smithsonian (CfA) in a statement.

The team was able to spot such a dip in X-rays from an X-ray binary called M51-ULS-1 in the Messier 51 galaxy. They found a three-hour period during which the X-rays emitted from this binary dropped to zero, suggesting the presence of a planet around the size of Saturn. They did consider whether the drop in X-rays could be due to another source, such as a cloud of dust, but they found the best fitting explanation with their data was the passing of a planet.

This finding is exciting as it indicates a new way to detect very distant exoplanets, however, the authors are careful to state that this is a potential discovery only, and they can’t be sure it definitely is a planet until they can do more research. The problem is that it will take a long time — around 70 years — until the potential planet passes in front of the binary once again.

“Unfortunately to confirm that we’re seeing a planet we would likely have to wait decades to see another transit,” said co-author Nia Imara of the University of California at Santa Cruz. “And because of the uncertainties about how long it takes to orbit, we wouldn’t know exactly when to look.”

But the researchers won’t be defeated by this, and they intend to keep searching archives of X-ray data to look for more candidate exoplanets in other galaxies. “Now that we have this new method for finding possible planet candidates in other galaxies, our hope is that by looking at all the available X-ray data in the archives, we find many more of those. In the future we might even be able to confirm their existence,”  said Di Stefano.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
There’s a tiny exoplanet orbiting our neighbor, known as Barnard’s star
Artist’s impression of a sub-Earth-mass planet orbiting Barnard’s star

In our local cosmic neighborhood, the nearest star is Proxima Centauri, which is part of the three-star Alpha Centauri system and known to host exoplanets of its own. But just a little further away is a single star on its own, known as Barnard's star. Recently, astronomers discovered that this star also hosts at least one exoplanet, and could host as many as four.

At just six light-years from Earth, Barnard's star is close by and has long been of interest to researchers searching for nearby exoplanets. But as a small, dim type of star called a red dwarf, no one has discovered an exoplanet here before -- though there were hints found in 2018 that such a planet might exist.

Read more
Crew Dragon is about to fly with empty seats for the first time. Here’s why
A Falcon 9 rocket launches from California.

NASA and SpaceX are making final preparations for the Crew-9 astronaut flight to the International Space Station (ISS), which is set to launch from the Kennedy Space Center in Florida on Thursday, September 26.

But this will be the first of SpaceX’s 13 crewed flights to the ISS since the first one in 2020 where there will be two empty seats on the Crew Dragon spacecraft. And there’s a very good reason for that. Let us explain.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more