Skip to main content

Our nearest neighboring star emits record-breaking stellar flare

Artist's conception of the violent stellar flare from Proxima Centauri discovered by scientists in 2019 using nine telescopes across the electromagnetic spectrum, including the Atacama Large Millimeter/submillimeter Array (ALMA). Powerful flares eject from Proxima Centauri with regularity, impacting the star's planets almost daily.
Artist’s conception of the violent stellar flare from Proxima Centauri discovered by scientists in 2019 using nine telescopes across the electromagnetic spectrum, including the Atacama Large Millimeter/submillimeter Array (ALMA). Powerful flares eject from Proxima Centauri with regularity, impacting the star’s planets almost daily. S. Dagnello, NRAO/AUI/NSF

A team of astronomers has observed the largest ever stellar flare emitted by our neighboring star, Proxima Centauri. The flare is 100 times more powerful than any solar flare coming from our sun and could be relevant to the search for habitable worlds.

Proxima Centauri is a type of star called a red dwarf, with a lower mass than our sun and giving off less light. But despite its seemingly calm exterior, the star undergoes dramatic stellar flares.

Recommended Videos

“Stars like Proxima Centauri look different from our sun, and they behave differently too,” explained co-author of the research, Parke Loyd of the Arizona State University, in a statement. “In particular, they flare a lot more than the sun, but we are only beginning to understand the magnitude and character of their flares.”

The researchers wanted to know whether these stellar flares are similar to the solar flares given out by our sun and whether both are caused by the same mechanisms. So they observed Proxima Centauri using telescopes including Hubble over a period in 2019 and looked in the ultraviolet wavelength to identify bursts of radiation.

“When the data from the Hubble Space Telescope came in and we made our first plot of how much ultraviolet light Proxima Centauri was emitting at each instant of the observations, it immediately became clear that we had caught a remarkable event,” said Loyd. “It was extremely bright and extremely brief. In only a few seconds the star’s ultraviolet radiation grew about 14,000 times brighter. ”

As well as learning about stars, this research could be important in the search for habitable exoplanets. “A lot of the exoplanets that we’ve found so far are around these types of stars,” lead author Meredith MacGregor of the University of Colorado-Boulder said. “But the catch is that they’re way more active than our sun. They flare much more frequently and intensely.”

Proxima Centauri hosts at least two planets, one of which, Proxima b, is in the habitable zone. But flares from the star may make these planets less hospitable for life.

“Humans cannot see ultraviolet light, but some animals, like some species of jumping spiders, can,” Loyd explained. “Imagining we could see ultraviolet light and we were standing on the planet Proxima Centauri b when this flare happened, we would have experienced a blinding flash, just about at the limit of our visual range.

“If organisms do exist on a planet like this, I suspect they would have to react very quickly to protect themselves at the earliest indication of a flare, and they would need to do this several times per day.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Watch this footage of a shooting star captured from the space station
The International Space Station.

From late this evening into the early hours of Thursday morning, many people will be directing their gaze skyward in the hope of seeing some shooting stars streaking across the sky.

Tonight is the peak of the annual Geminid meteor shower, so the coming hours offer the best chance to witness the effects of Earth passing through a cloud of debris left behind by the 3200 Phaethon asteroid.

Read more
Record-breaking supermassive black hole is oldest even seen in X-rays
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This composite image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra (purple) and infrared data from Webb (red, green, blue).

Astronomers recently discovered the most distant black hole ever observed in the X-ray wavelength, and it has some unusual properties that could help uncover the mysteries of how the largest black holes form.

Within the center of most galaxies lies a supermassive black hole, which is hundreds of thousands or even millions or billions of times the mass of our sun. These huge black holes are thought to be related to the way in which galaxies form, but this relationship isn't clear -- and how exactly supermassive black holes grow so massive is also an open question.

Read more
James Webb observes merging stars creating heavy elements
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That's how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Read more