Skip to main content

See a festive cosmic chicken captured by the VLT Survey Telescope

A new image from the VLT Survey Telescope shows a beautiful region called the Running Chicken Nebula, which makes for a striking festive scene. Located 6,500 light-years away, this region is full of bright young stars that sculpt the clouds of dust and gas around them to form complex structures.

The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at ESO’s Paranal site. This 1.5-billion pixel image spans an area in the sky of about 25 full Moons. The clouds shown in wispy pink plumes are full of gas and dust, illuminated by the young and hot stars within them.
The Running Chicken Nebula comprises several clouds, all of which we can see in this vast image from the VLT Survey Telescope (VST), hosted at European Southern Observatory’s Paranal site. This 1.5-billion-pixel image spans an area in the sky of about 25 full moons. The clouds shown in wispy pink plumes are full of gas and dust, and are illuminated by the young and hot stars within them. ESO/VPHAS+ team. Acknowledgement: CASU

This particular structure is thought to look like a chicken, as the European Southern Observatory explains: “The Running Chicken Nebula actually comprises several regions, all of which we can see in this vast image that spans an area in the sky of about 25 full Moons. The brightest region within the nebula is called IC 2948, where some people see the chicken’s head and others its rear end. The wispy pastel contours are ethereal plumes of gas and dust.

Recommended Videos

“Towards the center of the image, marked by the bright, vertical, almost pillar-like, structure, is IC 2944. The brightest twinkle in this particular region is Lambda Centauri, a star visible to the naked eye that is much closer to us than the nebula itself.”

The image is formed from a mosaic of many small images that have been stitched together, and were taken by a telescope located in the Paranal Observatory in Chile. The VLT Survey Telescope includes a camera instrument called OmegaCAM, which works in the visible light wavelength and observes the southern sky from its position in the Southern Hemisphere.

The images that make up the mosaic were taken using various different filters, each of which lets in a particular wavelength of light, allowing scientists to collect detailed information on distant targets like this nebula.

The nebula is being studied as part of a project to look at the life cycle of stars. When stars are born from clouds of dust and gas, they often give off large amounts of radiation when they are young. This radiation carves shapes into the dust and gas, forming shapes and illuminating the gas and making it glow.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Euclid space telescope captures stunning images of far-off galaxies
This image is released as part of the Early Release Observations from ESA’s Euclid space mission. All data from these initial observations are made public on 23 May 2024 – including a handful of unprecedented new views of the nearby Universe, this being one. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented – it is the first shot of this young star-forming region at this width and depth.

This image is released as part of the Early Release Observations from ESA’s Euclid space mission. This breathtaking image features Messier 78 (the central and brightest region), a vibrant nursery of star formation enveloped in a shroud of interstellar dust. This image is unprecedented, as it is the first shot of this young star-forming region at this width and depth. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

New images from the European Space Agency (ESA)'s Euclid telescope show a gorgeous range of cosmic objects, from bustling stellar nurseries to enormous galaxy clusters. The first science data from the telescope has also been released, showing how the telescope will contribute to the study of dark matter and dark energy.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more