Skip to main content

Saturn’s rings are jiggling, delightfully enough, due to its wobbly core

Saturn Makes Waves in its Own Rings

Our solar system is full of wonders, like the beauty of Saturn’s rings. But these rings aren’t static — recent research shows that they are gently jiggling.

Recommended Videos

Astronomers from the California Institute of Technology looked at data about Saturn from the now-defunct Cassini mission which orbited the planet between 2004 and 2017. They investigated the planet’s core, and found that it is not solid, as some previously thought, but is what Caltech describes as “a diffuse soup of ice, rock, and metallic fluids,” which makes for a type of call technically called a fuzzy core.

An illustration of Saturn and its "fuzzy" core.
An illustration of Saturn and its “fuzzy” core. Caltech/R. Hurt (IPAC)

The researchers were able to determine both the composition and the size of the core — which stretches across 60% of the planet’s diameter — by looking at the rings. “We used Saturn’s rings like a giant seismograph to measure oscillations inside the planet,” explained co-author Jim Fuller, assistant professor of theoretical astrophysics at Caltech. “This is the first time we’ve been able to seismically probe the structure of a gas giant planet, and the results were pretty surprising.”

The fuzzy core has a profound effect on the planet. “The fuzzy cores are like a sludge,” explains the lead author of the study, Christopher Mankovich. “The hydrogen and helium gas in the planet gradually mix with more and more ice and rock as you move toward the planet’s center. It’s a bit like parts of Earth’s oceans where the saltiness increases as you get to deeper and deeper levels, creating a stable configuration.”

This sludge oscillates slightly, which makes the whole planet jiggle. In turn, this causes ripples in the rings which the Cassini data showed.

“Saturn is always quaking, but it’s subtle,” says Mankovich. “The planet’s surface moves about a meter every one to two hours like a slowly rippling lake. Like a seismograph, the rings pick up the gravity disturbances, and the ring particles start to wiggle around.”

As well as being a delightful mental image, this finding leads to questions about how gas giants form. The current leading theory of their formation is that they begin with a rocky core. Over time, this core attracts gas through gravity, and these gases eventually form part of the planet. But if Saturn has a fuzzy core, it raises the question of whether gas is a key part of the formation of gas giants earlier than previously thought.

The findings are published in the journal Nature Astronomy.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble reveals glow of ‘ghostly’ light around our solar system
This artist's illustration shows the location and size of a hypothetical cloud of dust surrounding our solar system. Astronomers searched through 200,000 images and made tens of thousands of measurements from Hubble Space Telescope to discover a residual background glow in the sky.

Researchers using data from the Hubble Space Telescope have made a strange discovery: a "ghostly light" surrounding our solar system. When light from stars, planets, and even the glow of starlight scattered by dust is accounted for, there's still some "extra" light observed and astronomers are trying to work out where it's coming from.

The researchers looked at 200,000 Hubble images in a project called SKYSURF, looking for any excess of light beyond that coming from know sources. And they did find a consistent, faint glow that could suggest a previously unknown structure in our solar system. One suggestion is that there could be a sphere of dust surrounding the solar system, which reflects sunlight and causes the glow.

Read more
NASA needs good weather for Artemis launch, here’s how it’s looking
NASA's SLS rocket on its way to the launchpad.

With two hurricanes in the last six weeks disrupting NASA’s plans for the maiden launch of its next-generation Space Launch System (SLS) rocket and Orion spacecraft, we’re happy to report that everything is looking good for the next launch attempt planned for early on Wednesday morning.

According to a forecast from the 45th Weather Squadron, which provides detailed assessments for air and space operations in the U.S., the conditions at the Kennedy Space Center in Florida are 90% favorable for the much-anticipated test flight of NASA’s new hardware.

Read more
NASA shifts launch date again for its mega moon rocket
NASA's SLS rocket on the launchpad at the Kennedy Space Center in Florida.

NASA’s Artemis I mission just can’t catch a break.

Following several delays earlier this year due to technical issues on the launchpad, and more disruption caused by Hurricane Ian that prompted NASA to roll its next-generation Space Launch System (SLS) rocket to shelter, the approaching Tropical Storm Nicole is now causing concern among mission planners.

Read more