Skip to main content

Could supermassive black holes be formed from dark matter?

Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (coloured in blue)
Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (colored in blue). Studies looking at the formation of dark matter halos have suggested that each halo could harbor a very dense nucleus of dark matter, which may potentially mimic the effects of a central black hole, or eventually collapse to form one. ESO / L. Calçada, Attribution (CC BY 4.0)

At the heart of almost every galaxy lurks a monster — a supermassive black hole millions or even billions of times the mass of the sun. Astronomers are still trying to figure out how these enormous beasts form, and whether they are formed before or after the galaxies which surround them. Now, new research suggests that their formation could be related to another of astronomy’s great mysteries: Dark matter.

Most black holes form when large stars collapse to a point at which they have a very large amount of mass in a small volume. But using modeling, a team has investigated what would happen in a stable galactic core made of dark matter, surrounded by a dark matter halo. They found that the center of the dark matter region could become so dense that it would collapse into a supermassive black hole.

Recommended Videos

Dark matter halos are inferred to exist around galaxies, and even though they are invisible to us they seem to contain more mass than the regular matter of a typical galaxy. But to collapse and form a supermassive black hole, the study found that the halo would need to be of a certain size — larger than those found around dwarf galaxies, for example.

Please enable Javascript to view this content

“This model shows how dark matter halos could harbor dense concentrations at their centers, which may play a crucial role in helping to understand the formation of supermassive black holes,” said Carlos R. Argüelles, lead author, in a statement. “Here we’ve proven for the first time that such core–halo dark matter distributions can indeed form in a cosmological framework, and remain stable for the lifetime of the Universe.”

The model also suggests that this method would allow black holes to form quickly, even before the galaxies that surround them. This goes against a current theory that says that galaxies likely formed first in the early universe, and then supermassive black holes formed inside them.

This could help to explain how the earliest supermassive black holes formed in the early universe, when they weren’t many stars around, Argüelles said: “This new formation scenario may offer a natural explanation for how supermassive black holes formed in the early Universe, without requiring prior star formation or needing to invoke seed black holes with unrealistic accretion rates.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Is dark energy changing over time? A new survey suggests it could be
An artistic celebration of the Dark Energy Spectroscopic Instrument (DESI) year-one data, showing a slice of the larger 3D map that DESI is constructing during its five-year survey. By mapping objects across multiple periods of cosmic history with extremely high precision, DESI is allowing astronomers to make unprecedented measurements of dark energy and its effect on the accelerating expansion of the Universe.

New results from a survey into dark energy show a look back  11 billion years into the past, revealing the locations of tens of thousands of galaxies in the largest ever 3D map of the universe. The results from the Dark Energy Spectroscopic Instrument Survey, or DESI, were released this week and show how the universe has expanded over billions of years.

The results so far are shown in a 3D map covering 600,000 galaxies, though incredibly this data is just 0.1% of the total volume of the full survey. The results have been plotted to show how galaxies appear to be moving away from us as the universe expands, with light that has traveled the furthest represented in red, referring to the most distant galaxies, and nearer galaxies represented in blue.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Asimov’s vision of harvesting solar power from space could become a reality
Simplified diagram of space solar power concept..

It's an idea straight out of science fiction: A space station orbits around Earth, harvesting energy from the sun and beaming it down to our planet. Isaac Asimov popularized the concept in his 1941 story Reason, and futurists have been dreaming about it ever since.

But this notion is more than just an idle fantasy -- it's a highly practical concept being pursued by space agencies across the world, and it's almost within reach of current technologies. It could even be the solution to the energy crisis here on Earth.

Read more