Skip to main content

There could be life on Venus, groundbreaking study finds

A new study by an international group of astronomers suggests that there could be indicators of life on an unexpected planet: Venus.

The team identified indicators of a compound called phosphine in the clouds of Venus, which has previously been identified as a potential biomarker for life. This stinky and toxic gas is found in Earth’s atmosphere at low levels, but finding it on another planet is groundbreaking as it is primarily produced by anaerobic (non-oxygen-reliant) bacteria.

Artistic impression of Venus
This artistic impression depicts our Solar System neighbor Venus, where scientists have confirmed the detection of phosphine molecules. The molecules were detected in the Venusian high clouds in data from the James Clerk Maxwell Telescope and the Atacama Large Millimeter/submillimeter Array, in which ESO is a partner.  Astronomers have speculated for decades that life could exist in Venus’s high clouds. The detection of phosphine could point to such extra-terrestrial “aerial” life. ESO/M. Kornmesser & NASA/JPL/Caltech

Phosphine could also possibly be produced by non-biological processes such as lightning strikes, sunlight, or volcanoes, but these would only produce very small amounts of the gas. The finding of 20 parts of phosphine per billion sounds small but is actually relatively large, and therefore could be indicative that life may exist there.

Recommended Videos

The clouds of Venus are a strange and seemingly inhospitable location, composed primarily of sulfuric acid which obscures most of the surface when seen from orbit. The clouds are so thick that they keep in heat and make Venus the hottest planet in the solar system on its surface, even though Mercury is closer to the sun.

Despite the hellish environment, the idea that microbes could exist in the Venusian atmosphere has been suggested before, although it was generally considered an outlandish possibility.

The striking new finding, published today in Nature Astronomy, was confirmed with two different instruments to ensure that it wasn’t just a fluke. The first observations were made with the James Clerk Maxwell Telescope (JCMT) in Hawaii, which saw absorption on the wavelength associated with phosphine, meaning it is likely but not 100% confirmed that there is phosphine there. These findings were then confirmed by the Atacama Large Millimeter Array (ALMA) observatory in Chile.

“To our great relief, the conditions were good at ALMA for follow-up observations while Venus was at a suitable angle to Earth,” team member Anita Richards of the UK ALMA Regional Centre and the University of Manchester said in a statement.

“In the end, we found that both observatories had seen the same thing — faint absorption at the right wavelength to be phosphine gas, where the molecules are backlit by the warmer clouds below,” added Professor Jane Greaves of Cardiff University, leader of the research team.

Greaves also said she was shocked by the potential ramifications of the research: “This was an experiment made out of pure curiosity, really — taking advantage of JCMT’s powerful technology, and thinking about future instruments. I thought we’d just be able to rule out extreme scenarios, like the clouds being stuffed full of organisms. When we got the first hints of phosphine in Venus’ spectrum, it was a shock!”

This discovery is groundbreaking in our understanding of our Solar System, according to Professor Emma Bunce, President of the Royal Astronomical Society: “A key question in science is whether life exists beyond Earth, and the discovery by Professor Jane Greaves and her team is a key step forward in that quest. I’m particularly delighted to see U.K. scientists leading such an important breakthrough — something that makes a strong case for a return space mission to Venus.”

Bunce and other curious scientists may soon get their wish, as NASA is considering sending a mission called VERITAS to Venus to investigate the planet’s geology and volcanic activity. A decision will be made about the future of this proposal next year.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
How NASA is building an instrument to withstand the brutal conditions of Venus
An artists concept of DAVINCI+ on its way to Venus's surface.

Within the next decade, NASA's DAVINCI mission plans to send a descent sphere whistling through the atmosphere of Venus, collecting not only samples of its atmosphere but also high-resolution images of the planet's surface. But Venus is a deeply inhospitable place, with surface temperatures hotter than an oven and pressure so great it is like being 900 meters underwater. Now, NASA has shared more details about one of the DAVINCI mission's instruments and how it will collect vital data in this most challenging of environments.

DAVINCI's VASI instrument (Venus Atmospheric Structure Investigation) will be responsible for taking readings of the atmosphere as the descent sphere drops through the atmosphere on its 63-minute-long fall to the surface, including collecting data on temperature, pressure, wind speed and direction. This should help answer some long-open questions about the planet's atmosphere, particularly its lower atmosphere, which remains a mystery in many ways.

Read more
NASA aces test of robot balloon that could one day explore Venus
A prototype of an aerobot balloon that could one day explore Venus.

Mars gets a lot of attention from earthlings these days, but recently Venus is coming under the spotlight, with NASA, its European counterpart ESA, and New Zealand spaceflight company Rocket Lab all planning to send missions there in the coming years.

Besides these, NASA is also considering exploring the inhospitable planet by sailing a robotic "aerobot" balloon in the Venusian winds.

Read more
How we could search for life on Saturn’s icy moon Enceladus
Saturn's geologically active moon, Enceladus.

When it comes to searching for places beyond Earth where life could thrive in our solar system, some of the most intriguing targets aren't planets but rather moons. From Jupiter's icy moons like Europa to Saturn's moon Enceladus, these places are thought to host liquid water oceans beneath thick ice crusts which could potentially support life. Now, new evidence suggests support for the habitability of Enceladus, and NASA is developing missions to travels to these distant moons and search for evidence of life.

The research about Enceladus, published in the journal PNAS, shows that there seems to be dissolved phosphorus in the moon's ocean, which is an important ingredient for life. It is used in the creation of RNA and DNA, is found in cell membranes, and is found within our bodies in out bones and teeth. By studying data from the Cassini probe, the researchers were able to create a model of the ocean of Enceladus and how minerals would dissolve in it.

Read more