Skip to main content

Very Large Telescope captures a cosmic fireworks display

NGC 4254 as seen with MUSE on ESO’s VLT at several wavelengths of light
This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 4254. NGC 4254 is a grand-design spiral galaxy located approximately 45 million light-years from Earth in the constellation Coma Berenices. ESO/PHANGS

How do stars form? We understand the basics of this process: That gas and dust clumps together, creating gravitational attraction which brings more matter together, until eventually there is enough mass to crush the matter under high pressure and high temperature, birthing a new star. But what initiates this process is not fully understood, and recent images using data from the Very Large Telescope (VLT) could shed light on this question.

A team of international astronomers used the VLT’s Multi-Unit Spectroscopic Explorer (MUSE) instrument along with data from the Atacama Large Millimeter/submillimeter Array (ALMA) to create five images of nearby galaxies which shine like cosmic fireworks as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) project.

This image, taken by the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 4303.
This image, taken by the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 4303. ESO/PHANGS

As well as being visually striking, these images can help researchers understand how stars are formed in these galaxies. “There are many mysteries we want to unravel,” said Kathryn Kreckel from the University of Heidelberg in Germany and PHANGS team member. “Are stars more often born in specific regions of their host galaxies — and, if so, why? And after stars are born how does their evolution influence the formation of new generations of stars?”

This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 3627.
This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 3627. ESO/PHANGS

In addition to the data from the VLT and ALMA data, both of which are ground-based telescopes, the team is incorporating data from the Hubble Space Telescope into their project as well. The combination of both space-based and ground-based telescopes has allowed the researchers to see in three different wavelengths: Visible light, near-infrared, and radio.

Recommended Videos

“Their combination allows us to probe the various stages of stellar birth — from the formation of the stellar nurseries to the onset of star formation itself and the final destruction of the nurseries by the newly born stars — in more detail than is possible with individual observations,” says PHANGS team member Francesco Belfiore from INAF-Arcetri in Florence, Italy. “PHANGS is the first time we have been able to assemble such a complete view, taking images sharp enough to see the individual clouds, stars, and nebulae that signify forming stars.”

The galaxy NGC 1087. taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT).
This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 1087. ESO/PHANGS

However, as sharp as the data from PHANGS is, the researchers want even higher resolution images to see inside star-forming clouds more clearly. In the future, the project will use data from upcoming telescopes like the James Webb Space Telescope or the Extremely Large Telescope to get even more detailed data.

This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 1300.
This image, taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT), shows the nearby galaxy NGC 1300. ESO/PHANGS
Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
See planets being born in new images from the Very Large Telescope
This composite image shows the MWC 758 planet-forming disc, located about 500 light-years away in the Taurus region, as seen with two different facilities. The yellow colour represents infrared observations obtained with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope (VLT). The blue regions on the other hand correspond to observations performed with the Atacama Large Millimeter/submillimeter Array (ALMA).

Astronomers have used the Very Large Telescope to peer into the disks of matter from which exoplanets form, looking at more than 80 young stars to see which may have planets forming around them. This is the largest study to date on these planet-forming disks, which are often found within the same huge clouds of dust and gas that stars form within.

A total of 86 young stars were studied in three regions known to host star formation: Taurus and Chamaeleon I, each located around 600 light-years away, and Orion, a famous stellar nursery located around 1,600 light-years away. The researchers took images of the disks around the stars, looking at their structures for clues about how different types of planets can form.

Read more