Skip to main content

See elements as colors in this galaxy where stars are being born

From Hubble to the James Webb Space Telescope, when you think of the tools that capture images of space some of the first examples that come to mind are likely to be space-based telescopes. These telescopes have the advantage of being above the water vapor in Earth’s atmosphere which can distort readings, and allows them to look out at the universe in great detail. But there are advantages of ground-based telescopes as well, such as being able to build much larger structures and to more easily upgrade these telescopes with new instruments.

One such ground-based telescope is the European Southern Observatory (ESO)’s Very Large Telescope. As the name suggests it is indeed very large, being made up of four separate telescopes each of which has an 8.2-meter (27 feet) primary mirror and which work together to look out at space in the visible light and infrared wavelengths. On the telescope named Yepun sits an instrument called MUSE, or the Multi-Unit Spectroscopic Explorer (MUSE), which uses a technology called adaptive optics to collect high-resolution data about areas of space.

Spiral galaxy NGC 4303, also known as Messier 61,.
An image of the spiral galaxy NGC 4303, also known as Messier 61, which is one of the largest galactic members of the Virgo Cluster. Being a so-called starburst galaxy, it has an unusually high amount of stars being born and has been used by astronomers as a laboratory to better understand the fascinating phenomena of star formation. ESO/PHANGS

ESO recently shared this image taken by the MUSE instrument, showing the stunning spiral galaxy NGC 4303. This image represents spectroscopy data which has been colorized to show different elements which are present, collected as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) project. This galaxy is a type called a starburst galaxy, meaning it is a site of vigorous star formation, and studying it can help us learn about how stars are born.

Recommended Videos

“Stars form when clouds of cold gas collapse,” ESO explains. “The energetic radiation from newly born stars will heat and ionize the surrounding remaining gas. The ionized gas will shine, acting as a beacon of ongoing star formation. In this stunning and jewel-like image, this glowing gas can be seen as the whirlpool of gold: the direct traces of stars being born.

Please enable Javascript to view this content

“The golden glow is a result of combining observations taken at different wavelengths of light with the Multi-Unit Spectroscopic Explorer (MUSE) instrument on ESO’s Very Large Telescope (VLT) in Chile. Here gas clouds of ionized oxygen, hydrogen, and sulfur are shown in blue, green, and red, respectively.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more