Skip to main content

See elements as colors in this galaxy where stars are being born

From Hubble to the James Webb Space Telescope, when you think of the tools that capture images of space some of the first examples that come to mind are likely to be space-based telescopes. These telescopes have the advantage of being above the water vapor in Earth’s atmosphere which can distort readings, and allows them to look out at the universe in great detail. But there are advantages of ground-based telescopes as well, such as being able to build much larger structures and to more easily upgrade these telescopes with new instruments.

One such ground-based telescope is the European Southern Observatory (ESO)’s Very Large Telescope. As the name suggests it is indeed very large, being made up of four separate telescopes each of which has an 8.2-meter (27 feet) primary mirror and which work together to look out at space in the visible light and infrared wavelengths. On the telescope named Yepun sits an instrument called MUSE, or the Multi-Unit Spectroscopic Explorer (MUSE), which uses a technology called adaptive optics to collect high-resolution data about areas of space.

Spiral galaxy NGC 4303, also known as Messier 61,.
An image of the spiral galaxy NGC 4303, also known as Messier 61, which is one of the largest galactic members of the Virgo Cluster. Being a so-called starburst galaxy, it has an unusually high amount of stars being born and has been used by astronomers as a laboratory to better understand the fascinating phenomena of star formation. ESO/PHANGS

ESO recently shared this image taken by the MUSE instrument, showing the stunning spiral galaxy NGC 4303. This image represents spectroscopy data which has been colorized to show different elements which are present, collected as part of the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) project. This galaxy is a type called a starburst galaxy, meaning it is a site of vigorous star formation, and studying it can help us learn about how stars are born.

Recommended Videos

“Stars form when clouds of cold gas collapse,” ESO explains. “The energetic radiation from newly born stars will heat and ionize the surrounding remaining gas. The ionized gas will shine, acting as a beacon of ongoing star formation. In this stunning and jewel-like image, this glowing gas can be seen as the whirlpool of gold: the direct traces of stars being born.

“The golden glow is a result of combining observations taken at different wavelengths of light with the Multi-Unit Spectroscopic Explorer (MUSE) instrument on ESO’s Very Large Telescope (VLT) in Chile. Here gas clouds of ionized oxygen, hydrogen, and sulfur are shown in blue, green, and red, respectively.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more
James Webb Telescope captures gorgeous galaxy with a hungry monster at its heart
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is Messier 106, also known as NGC 4258. This is a nearby spiral galaxy that resides roughly 23 million light-years away in the constellation Canes Venatici, practically a neighbour by cosmic standards. Messier 106 is one of the brightest and nearest spiral galaxies to our own and two supernovae have been observed in this galaxy in 1981 and 2014.

A new image from the James Webb Space Telescope shows off a nearby galaxy called Messier 106 -- a spiral galaxy that is particularly bright. At just 23 million light-years away (that's relatively close by galactic standards), this galaxy is of particular interest to astronomers due to its bustling central region, called an active galactic nucleus.

The high level of activity in this central region is thought to be due to the monster that lurks at the galaxy's heart. Like most galaxies including our own, Messier 106 has an enormous black hole called a supermassive black hole at its center. However, the supermassive black hole in Messier 106 is particularly active, gobbling up material like dust and gas from the surrounding area. In fact, this black hole eats so much matter that as it spins, it warps the disk of gas around it, which creates streamers of gas flying out from this central region.

Read more