Skip to main content

Hawaiian telescope snaps an image of a recently formed baby planet

We’ve discovered thousands of planets beyond our solar system, but the vast majority of these have been observed indirectly by seeing how the planet affects the star around which it orbits. Recently, astronomers had the rare treat of observing an exoplanet directly — and it’s one of the youngest planets ever found.

Planet 2M0437b orbits far from its star, at around 100 times the distance between Earth and the sun, and is several times the mass of Jupiter. It formed a few million years ago, which is a blink of the eye in cosmic timescales, and it is so young that it is still hot from the energy released during its formation.

A direct image of the planet 2m0437, which lies about 100 times the earth-sun distance from its parent star.
A direct image of the planet 2M0437, which lies about 100 times the earth-sun distance from its parent star. The image was taken by IRCS on the Subaru Telescope on Maunakea. The much-brighter host star has been mostly removed, and the four “spikes” are artifacts produced by the optics of the telescope. Subaru Telescope

The planet was first spotted using the Subaru Telescope, located on Maunakea in Hawai’i, and was then further observed using the nearby W. M. Keck Observatory. Even with the help of the planet’s far distance from its star and its large size, it still took three years of observations to verify the presence of the planet and to image it.

Recommended Videos

“This serendipitous discovery adds to an elite list of planets that we can directly observe with our telescopes,” said lead author Eric Gaidos, a professor at the University of Hawaiʻi at Mānoa, in a statement. “By analyzing the light from this planet we can say something about its composition, and perhaps where and how it formed in a long-vanished disk of gas and dust around its host star.”

The summit of Maunakea, Hawai'i at night, showing the two Keck telescope domes in the front right.
The summit of Maunakea, Hawai’i at night, showing the two Keck telescope domes in the front right. W. M. Keck Observatory

In the future, the researchers want to see if they can measure the planet’s orbital motion around its star, and future telescopes like the upcoming James Webb Space Telescope could even be used to see the gases in its atmosphere or detect a moon-forming disk of matter around it.

“Two of the world’s largest telescopes, adaptive optics technology, and Maunakea’s clear skies were all needed to make this discovery,” said co-author Michael Liu, an astronomer at the Institute for Astronomy. “We are all looking forward to more such discoveries, and more detailed studies of such planets with the technologies and telescopes of the future.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
Super-sensitive exoplanet-hunting instrument captures its first light data
James Chong, infrastructure technician at Keck Observatory, assisting with the delicate lift of the Zerodur optics bench into the observatory basement where the instrument resides.

Astronomers will soon have a new tool for hunting exoplanets, as the W. M. Keck Observatory's Keck Planet Finder (KPF) instrument recently took its first observations. KPF's "first light" observations captured data from Jupiter, demonstrating how the instrument will be able to detect planets beyond our solar system in the future.

Located at Maunakea in Hawaiʻi, the new instrument detects exoplanets using the radial velocity method. This works by observing a star and looking for a slight wobble, caused by the gravity of planets orbiting around it. This wobble changes the light coming from the star just slightly, in a way that can be used to work out the properties of the planet. The instrument measures spectra, or the wavelengths of light coming from a star, with more massive planets making bigger wobbles.

Read more
X-ray data from Chandra gives a new view of Webb’s first images
X-rays from Chandra have been combined with infrared data from early publicly-released James Webb Space Telescope images.

This week has been a fun time for telescope team-ups, with a recent project combining data from the James Webb and Hubble Space Telescopes. There's also a second set of images that has been released that combines data from the James Webb Space Telescope and the Chandra X-ray Observatory.

The Chandra observatory, which is also a space-based telescope, looks in the X-ray wavelength to investigate phenomena like epic kilonova explosions, search for the universe's missing matter, and capture stunning images of the universe as seen in X-ray observations. It has even been used to detect a possible exoplanet in the Whirlpool galaxy. Now, it has turned its sights on the targets of James Webb's first images to show these now-famous objects in a new light.

Read more