Skip to main content

James Webb snapped a picture of an exoplanet for the first time

The James Webb Space Telescope has directly imaged an exoplanet for the first time. This is exciting because it is very rare for exoplanets to be directly imaged, as usually, their existence has to be inferred from other data. By taking an image of a planet outside our solar system, Webb demonstrates how we’ll be able to gather more information than ever before about distant worlds.

There are over 5,000 known exoplanets, but the vast majority of these have been detected using techniques like the transit method, in which the light from a host star dips slightly when a planet passes in front of it, or radial velocity, in which a star is slightly tugged around by the gravity of a planet. In these methods, the existence of a planet is inferred because of the effect that can be observed on a star, so the planet itself isn’t directly observed. In rare cases, however, an exoplanet can be observed directly, particularly if it is a large planet located relatively nearby.

This image shows the exoplanet HIP 65426 b in different bands of infrared light.
This image shows the exoplanet HIP 65426 b in different bands of infrared light, as seen from the James Webb Space Telescope: purple shows the NIRCam instrument’s view at 3.00 micrometers, blue shows the NIRCam instrument’s view at 4.44 micrometers, yellow shows the MIRI instrument’s view at 11.4 micrometers, and red shows the MIRI instrument’s view at 15.5 micrometers. These images look different because of the ways the different Webb instruments capture light. NASA/ESA/CSA, A Carter (UCSC), the ERS 1386 team, and A. Pagan (STScI)

Webb made one such direct observation of the exoplanet HIP 65426 b, and was able to capture an image of the planet using four different filters. Each of these filters corresponds to a different wavelength of light, capturing different features of the planet and its environment. The planet is a big one at between six and 12 times the mass of Jupiter, and it is a relative youngster at just 15 to 20 million years old.

Recommended Videos

“This is a transformative moment, not only for Webb but also for astronomy generally,” said leader of the observations Sasha Hinkley in a statement.

To observe the planet, the researchers needed to block out the light coming from the planet’s host star. As the star is so much brighter than the planet, this light has to be blocked to make it possible to see the planet. This is done with an instrument called a coronagraph, which is a mask that blocks light from a bright source.

“It was really impressive how well the Webb coronagraphs worked to suppress the light of the host star,” Hinkley said.

“Obtaining this image felt like digging for space treasure,” said another of the researchers, Aarynn Carter. “At first all I could see was light from the star, but with careful image processing I was able to remove that light and uncover the planet.”

This finding demonstrates some of Webb’s abilities when it comes to finding and investigating exoplanets. “I think what’s most exciting is that we’ve only just begun,” Carter said. “There are many more images of exoplanets to come that will shape our overall understanding of their physics, chemistry, and formation. We may even discover previously unknown planets, too.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
James Webb is explaining the puzzle of some of the earliest galaxies
This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. The light from some of them has traveled for over 13 billion years to reach the telescope.

From practically the moment it was turned on, the James Webb Space Telescope has been shaking cosmology. In some of its very earliest observations, the telescope was able to look back at some of the earliest galaxies ever observed, and it found something odd: These galaxies were much brighter than anyone had predicted. Even when the telescope's instruments were carefully calibrated over the few weeks after beginning operations, the discrepancy remained. It seemed like the early universe was a much busier, brighter place than expected, and no one knew why.

This wasn't a minor issue. The fact early galaxies appeared to be bigger or brighter than model predicted meant that something was off about the way we understood the early universe. The findings were even considered "universe breaking." Now, though, new research suggests that the universe isn't broken -- it's just that there were early black holes playing tricks.

Read more